【题目】如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AD⊥CD于点D.
(1)、求证: AC平分∠DAB;(2)、若点E为的中点,AD=,AC=8,求AB和AE的长.
【答案】(1)、证明过程见解析;(2)、AB=10;AE=5.
【解析】
试题分析:(1)、连接OC,根据切线的性质和垂直得出AD∥OC,则∠DAC=∠ACO,根据OA=OC得出∠CAO=∠ACO,从而说明∠DAC=∠CAO,得出角平分线;(2)、连接BC,证明△ADC和△ACB相似,从而求出AB的长度,根据E为中点得出△AOE为等腰直角三角形,从而得出AE的长度.
试题解析:(1)、连接OC ∵CD与圆相切与点C ∴∠DCO=90° ∵AD⊥CD ∴AD∥OC
∴∠DAC=∠ACO ∵OA=OC ∴∠CAO=∠ACO ∴∠DAC=∠CAO ∴AC平分∠DAB
(2)、连接BC, ∵AB为直径 ∴∠ACB=∠ADC=90° 由(1)得∠DAC=∠CAO
∴△ADC∽△ACB. ∴ ∵,AC=8, ∴AB=10.
∵点为的中点,∴∠AOE=90°.∴△AOE为等腰直角三角形 ∴AO=OE=5 AE=5
科目:初中数学 来源: 题型:
【题目】一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元。
(1)甲、乙公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司施工费较少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法:①直径是弦;②经过三点一定可以作圆;③三角形的外心到三角形各顶点的距离相等;④长度相等的弧是等弧;⑤平分弦的直径垂直于弦.其中正确的是(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某校要用20m的篱笆,一面靠墙(墙长10m),围成一个矩形花圃,设矩形花圃垂直于墙的一边长为xm,花圃的面积为ym2.
(1)求出y与x的函数关系式.
(2)当矩形花圃的面积为48m2时,求x的值.
(3)当边长x为多少时,矩形的面积最大,最大面积是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com