精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,边长为1的正方形的两边在坐标轴上,以它的对角线为边作正方形,再以正方形的对角线为边作正方形,以此类推、则正方形的顶点的坐标是______

【答案】

【解析】

根据给定图形结合正方形的性质可得出,点B1B2B3B4B5、的坐标,观察点的坐标可得知,下标为奇数的点的坐标的横纵坐标的绝对值依此为前一个点的横纵坐标绝对值的2倍,且4次一循环,依此规律即可得出结论.

正方形边长为1

正方形是正方形的对角线为边,

点坐标为

同理可知

点坐标为

同理可知点坐标为

点坐标为点坐标为

由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,

的纵横坐标符号与点的相同,横坐标为正值,纵坐标是0

的坐标为

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知的直径,,点和点上关于直线对称的两个点,连接,且,直线和直线相交于点,过点作直线与线段的延长线相交于点,与直线相交于点,且

1)求证:直线的切线;

2)若点为线段上一点,连接,满足

①求证:

②求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB是⊙O的直径,C点在⊙O上,FAC的中点,OF的延长线交⊙O于点D,点EAB的延长线上,∠A=∠BCE

1)求证:CE是⊙O的切线;

2)若BCBE,判定四边形OBCD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线过点,与轴交于点.轴下方的抛物线上一动点(包含点,).作直线,若过点轴的垂线,交直线于点

1)求抛物线的解析式;

2)在点运动的过程中,请求出面积的最大值及此时点的坐标;

3)在点运动的过程中,是否存在点,使是等腰三角形.若存在,请直接写出点的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的四个顶点分别在反比例函数(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.

(1)当m=4,n=20时.

①若点P的纵坐标为2,求直线AB的函数表达式.

②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.

(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的 概率是;中再放进1个黑球,这时取得黑球的概率变为

(1)填空:x=_____________, y=____________________;

(2)小王和小林利用x黑球和y个白球进行摸球游戏。约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国魏晋时期的数学家刘徽首创割圆术”,奠定了中国圆周率计算在世界上的领先地位.刘徽提出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,由此求得圆周率的近似值.如图,设半径为的圆内接正边形的周长为,圆的直径为,当时,,则当时,______.(结果精确到0.01,参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图AMBNCBN上一点, BD平分∠ABN且过AC的中点O,交AM于点DDEBD,交BN于点E

1)求证:ADO≌△CBO

2)求证:四边形ABCD是菱形.

3)若DE = AB = 2,求菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一不透明的袋子中装有四张标有数字的卡片,这些卡片除数字外其余均相同.小明同学按照一定的规则抽出两张卡片,并把卡片上的数字相加,下图是他所画的树状图的一部分.

1)由上图分析,该游戏规则是:第一次从袋子中随机抽出一张卡片后    (填“放回”或“不放回”),第二次随机再抽出一张卡片;

2)帮小明同学补全树状图,并求小明同学两次抽到卡片上的数字之和为偶数的概率.

查看答案和解析>>

同步练习册答案