精英家教网 > 初中数学 > 题目详情
如图,在△AOB中,OA=OB,∠A=30°,⊙O经过AB的中点E分别交OA、OB于C、D两点,连接CD.
(1)求证:AB是⊙O的切线;
(2)求证:AB∥CD.
分析:(1)连接OE,根据等腰三角形性质推出OE⊥AB,根据切线的判定求出即可;
(2)根据三角形的内角和定理求出∠O,根据等腰三角形的性质求出∠OCD=∠ODC=30°,得出∠OCD=∠A即可.
解答:(1)证明:连接OE,
∵OA=OB,E为AB的中点,
∴OE⊥AB,
∵OE是半径,
∴AB是⊙O的切线.

(2)证明:∵OA=OB,
∴∠A=∠B=30°,
∴∠O=180°-30°-30°=120°,
∵OC=OD,
∴∠OCD=∠ODC=
1
2
(180°-∠AOB)=30°,
∴∠OCD=∠A,
∴CD∥AB.
点评:本题考查了三角形的内角和定理、等腰三角形的性质、切线的判定、平行线的判定等知识点的运用,证明是切线的方法之一:知圆过一点,连接圆心和该点,证垂直.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在△AOB中,OA⊥OB,OC⊥AB于C,OB=4
5
cm,OA=2
5
cm,以O为圆心4cm为半径作⊙O.求证:AB与⊙O相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△AOB中,OA=OB=8,∠AOB=90°,矩形CDEF的顶点C、D、F分别在边AO、OB、AB上.
(1)若C、D恰好是边AO,OB的中点,求矩形CDEF的面积;
(2)若tan∠CDO=
43
,求矩形CDEF面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△AOB中,OA=OB=8,∠AOB=90°,矩形CDEF的顶点C、D、F分别在边AO、OB、AB上,若tanCDO=
4
3
,则矩形CDEF面积的最大值s=
100
7
100
7

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△AOB中,A、B两点的坐标分别为(2,4)和(6,2),求△AOB的面积.

查看答案和解析>>

同步练习册答案