精英家教网 > 初中数学 > 题目详情

【题目】第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.

【答案】2700
【解析】解:根据题意得:9000×(1﹣30%﹣15%﹣ ×100%)
=9000×30%
=2700(人).
答:可以估计其中对慈善法“非常清楚”的居民约有2700人.
故答案为:2700.
先求出非常清楚所占的百分百,再乘以该辖区的总居民,即可得出答案.此题考查了用样本估计总体,在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.

(一)尝试探究
如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD上,∠EAF=30°,连接EF.
(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF=度,线段BE、EF、FD之间的数量关系为
(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.

(1)求该抛物线所对应的函数解析式;
(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;
(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.
①若∠APE=∠CPE,求证:
②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知A(a,0),B (0,b)分别为两坐标轴上的点,且a,b满足a2﹣24a+|b﹣12|=﹣144,且3OC=OA.

(1)A、B、C三点的坐标;

(2)D(2,0),过点D的直线分别交AB、BCE、F两点,且DF=DE,设E、F两点的横坐标分别为xE、xP,求xE+xP的值;

(3)如图2,若M(4,8),点Px轴上A点右侧一动点,AHPM于点H,在HM上取点G,使HG=HA,连接CG,当点P在点A右侧运动时,∠CGM的度数是否改变?若不变,请求其值;若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是(  )

A.4﹣6小时
B.6﹣8小时
C.8﹣10小时
D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:

关注情况

频数

频率

A.高度关注

M

0.1

B.一般关注

100

0.5

C.不关注

30

N

D.不知道

50

0.25


(1)根据上述统计图可得此次采访的人数为人,m= , n=
(2)根据以上信息补全条形统计图;
(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】表为甲班55人某次数学小考成绩的统计结果,关于甲班男、女生此次小考成绩的统计量,下列叙述何者正确?(  )

成绩(分)

50

70

90

男生(人)

10

10

10

女生(人)

5

15

5

合计(人)

15

25

15


A.男生成绩的四分位距大于女生成绩的四分位距
B.男生成绩的四分位距小于女生成绩的四分位距
C.男生成绩的平均数大于女生成绩的平均数
D.男生成绩的平均数小于女生成绩的平均数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为( )
A.
B.
C.
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=

查看答案和解析>>

同步练习册答案