分析 (1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因为△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF,根据△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形;
(2)直接利用等边三角形的性质结合平行四边形的性质得出各边长即可得出答案.
解答 (1)证明:∵Rt△ABC中,∠BAC=30°,
∴AB=2BC,
又∵△ABE是等边三角形,EF⊥AB,
∴AB=2AF
∴AF=BC,
在Rt△AFE和Rt△BCA中,
$\left\{\begin{array}{l}{AF=BC}\\{AE=AB}\end{array}\right.$,
∴△AFE≌△BCA(HL),
∴AC=EF;
∵△ACD是等边三角形,
∴∠DAC=60°,AC=AD,
∴∠DAB=∠DAC+∠BAC=90°
,
又∵EF⊥AB,
∴EF∥AD,
∵AC=EF,AC=AD,
∴EF=AD,
∴四边形ADFE是平行四边形;
(2)解:∵∠BAC=30°,BC=2,∠ACB=90°,
∴AB=AE=4,
∵AF=BF=$\frac{1}{2}$AB=2,
则EF=AD=2$\sqrt{3}$,
故四边形ADFE的周长为:2(4+2$\sqrt{3}$)=8+4$\sqrt{3}$.
点评 此题主要考查了全等三角形的判定与性质以及等边三角形的性质和平行四边形的判定与性质,正确利用全等三角形的性质和等边三角形的性质证明平行四边形是解题关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 8cm | B. | 9cm | C. | 10cm | D. | 12cm |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com