精英家教网 > 初中数学 > 题目详情
12.如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,求四边形ABCD的面积.

分析 如图,连接BD.首先利用勾股定理求出BD,再利用勾股定理的逆定理证明△BDC是直角三角形,分别求出△ABD,△DBC的面积即可解决问题.

解答 解:如图,连接BD.

在Rt△ABD中,∵∠A=90°,AD=4,AB=3,
∴BD=$\sqrt{A{D}^{2}+A{B}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∵BD2+BC2=52+122=169,DC2=132=169,
∴BD2+BC2=CD2
∴△BDC是直角三角形,
∴S△DBC=$\frac{1}{2}$•BD•BC=$\frac{1}{2}$×5×12=30,S△ABD=$\frac{1}{2}$•AD•AB=$\frac{1}{2}$×3×4=6,
∴四边形ABCD的面积=S△BDC+S△ADB=36.

点评 本题考查勾股定理、勾股定理的逆定理、三角形的面积等知识,解题的关键是把四边形问题转化为三角形问题解决,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.已知在数轴上有A,B两点,点A表示的数为8,点B在A点的左边,且AB=12.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.
(1)解决问题:①当t=1秒时,写出数轴上点B,P所表示的数;
②若点P,Q分别从A,B两点同时出发,问点P运动多少秒与Q相距3个单位长度?
(2)探索问题:若M为AQ的中点,N为BP的中点.当点P在P、Q上运动过程中,探索线段MN与线段PQ的数量关系(写出过程).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,将三个同样的正方形的一个顶点重合放置,如果∠1=45°,∠3=30°时,那么∠2的度数是(  )
A.15°B.25°C.30°D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,抛物线与x轴交于A,B两点,点B坐标是(3,0),与y轴交于点C,顶点D的坐标是(1,-4),对称轴与x轴交于点E
(1)求抛物线的解析式;
(2)判断△AOC与△BCD是否相似?并证明你的结论;
(3)在对称轴右侧上找点M,过点M作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.观察下列等式:1×$\frac{1}{2}$=1-$\frac{1}{2}$,2×$\frac{2}{3}$=2-$\frac{2}{3}$,3×$\frac{3}{4}$=3-$\frac{3}{4}$,…
(1)猜想并写出第n个等式;
(2)证明你写出的等式的正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.在四边形ABCD中,连接对角线AC、BD,AB=BC,DC=6,AD=9,且∠ABC=2∠ADC=60°,则BD=3$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知,如图,△ABC为等边三角形,CD∥AB.点E、F分别在BC延长线及CD上,∠EAF=60°,联结EF.求证:EF=AF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知在四边形ABCD中,∠A=90°,AB=3,AD=4,BC=12,CD=13,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.平顶山市教育局举行'重走长征路”健步活动,某教师从起点体育村沿建设路到市生态园.再沿原路返回.该教师离开起点的路程S(千米)与步行时间t(小时)之间的函数关系如图所示.其中从起点到市生态园的平均速度是4千米/小时.用2小时.根据图象提供信息.解答下列问题
(1)求图中的a的值.
(2)若在距离起点5千米处有一个地点C,该教师从第一次经过点C到第二次经过点C,所用时间为1.75小时
①求AB所在直线的函数关系式;
②该教师走完全程用多少时间?

查看答案和解析>>

同步练习册答案