精英家教网 > 初中数学 > 题目详情

如图,一次函数数学公式的图象交x轴于点A,交正比例函数数学公式的图象于点B.矩形CDEF的边DC在x轴上,D在C的左侧,EF在x轴上方,DC=2,DE=4.当点C坐标为(-2,0)时,矩形CDEF开始以每秒2个单位的速度沿x轴向右运动,运动时间为t秒.
(1)求点B的坐标.
(2)矩形CDEF运动t秒时,直接写出C、D两点的坐标.
(3)当点B在矩形CDEF的一边上时,求t的值.
(4)设CF、DE分别交折线OBA于M、N两点,当四边形MCDN为直角梯形时,求t的取值范围.

解:(1)由
解得:
∴点B的坐标为(2,3).

(2)∵矩形CDEF开始以每秒2个单位的速度沿x轴向右运动,运动时间为t秒.
∴C、D两点的坐标为:(-2+2t,0)(-4+2t,0).

(3)当B点在CF上时,则
-2+2t=2,
t=2.
当B在ED上时,则
-4+2t=2,
t=3.

(4)根据题意得,当D点在点O处时,t=2,
当点C在A处时,t=5,
又∵当DC在OA之间运动时,
四边形MCDN为直角梯形.
把x=-2+2t代入得:y=-(-2+2t)+4,
把x=-4+2t代入得:y=(-4+2t),
当-(-2+2t)+4=(-4+2t)时,解得:t=
∴t的取值范围是:2<t<5且t≠
分析:(1)本题需先根据题意列出方程组,求出方程组的解集即可得出点B的坐标.
(2)本题需根据矩形向右移动的速度和时间以及点C、D,原来的坐标即可写出C、D两点的坐标.
(3)本题需分当B点在CF上,当B点在ED上两种情况讨论即可.
(4)本题需先求出当D点在点O处时,当点C在A处时t的值,即可求出四边形MCDN为直角梯形时t的取值范围.
点评:本题主要考查了一次函数的综合应用,在解题时要注意把一次函数的图象和性质与直角梯形相结合是本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知反比例函数y=
12x
的图象和一次函数y=kx-7的图象都经过点P(m,2).
(1)求这个一次函数的解析式;
(2)如果等腰梯形ABCD的顶点A、B在这个一次函数的图象上,顶点C、D在这个反比例函数的图象上,两底AD、BC与y轴平行,且A和B的横坐标分别为a、b(b>a>0),求代数式ab的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数的图象与反比例函数y1= –  ( x<0)的图象相交于A点,与y轴、x轴分别相交于BC两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.

(1)    求一次函数的解析式;

(2)    设函数y2=  (x>0)的图象与y1= –  (x<0)的图象关于y轴对称.在y2=  (x>0)的图象上取一点PP点的横坐标大于2),过PPQx轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数的图象与反比例函数(x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0),当x<-1时,一次函数值大于反比例函数值,当x>-1时,一次函数值小于反比例函数值.

(1)求一次函数的解析式;

(2)设函数(x>0)的图象与(x<0)的图象关于y轴对称,在(x>0)的图象上取一点P(P点的横坐标大于2),过P点作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

解答:

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数的图象与反比例函数y1= – ( x<0)的图象相交于A点,与y轴、x轴分别相交于BC两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.

(1)   求一次函数的解析式;

(2)   设函数y2= (x>0)的图象与y1= – (x<0)的图象关于y轴对称.在y2= (x>0)的图象上取一点PP点的横坐标大于2),过PPQx轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数的图象与反比例函数y1= – ( x<0)的图象相交于A点,与y轴、x轴分别相交于BC两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.

(1)   求一次函数的解析式;

(2)   设函数y2= (x>0)的图象与y1= – (x<0)的图象关于y轴对称.在y2= (x>0)的图象上取一点PP点的横坐标大于2),过PPQx轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案