精英家教网 > 初中数学 > 题目详情
精英家教网设二次函数y1=x2-4x+3的图象为C1,二次函数y2=ax2+bx+c(a≠0)的图象与C1关于y轴对称.
(1)求二次函数y2=ax2+bx+c的解析式; 
(2)当-3<x≤0时,直接写出y2的取值范围;
(3)设二次函数y2=ax2+bx+c(a≠0)图象的顶点为点A,与y轴的交点为点B,一次函数y3=kx+m(k,m为常数,k≠0)的图象经过A,B两点,当y2<y3时,直接写出x的取值范围.
分析:(1)求出抛物线C1的顶点坐标,再根据关于y轴对称的点的横坐标互为相反数,纵坐标相同求出抛物线C2的顶点坐标,然后利用顶点式形式写出即可;
(2)作出函数图象,然后根据图形写出y2的取值范围即可;
(3)根据函数图象写出抛物线C2在直线AB的下方部分的x的取值范围即可.
解答:精英家教网解:(1)二次函数y1=x2-4x+3=(x-2)2-1图象的顶点(2,-1),
关于y轴的对称点坐标为(-2,-1)
所以,所求的二次函数的解析式为y2=(x+2)2-1,
即y2=x2+4x+3;

(2)如图,-3<x≤0时,y2的取值范围为:-1≤y2≤3;

(3)y2<y3时,-2<x<0.
点评:本题考查了二次函数图象与几何变换,利用顶点的变化确定抛物线解析式的变化更简便.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

设二次函数y=ax2+bx+c(a>0,b>0)的图象经过(0,y1)、(1,y2)和(-1,y3精英家教网三点,且满足y12=y22=y32=1.
(1)求这个二次函数的解析式;
(2)设这个二次函数的图象与x轴的两个交点为A(x1,0),B(x2,0),x1<x2,C为顶点,连接AC、BC,动点P从A点出发沿折线ACB运动,求△ABP的面积的最大值;
(3)当点P在折线ACB上运动时,是否存在点P使△APB的外接圆的圆心在x轴上?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知二次函数y=x2+bx-3的图象经过点P(-2,5)
(1)求b的值并写出当1<x≤3时y的取值范围;
(2)设P1(m,y1)、P2(m+1,y2)、P(m+2,y3)在这个二次函数的图象上,
①当m=4时,y1、y2、y3能否作为同一个三角形三边的长?请说明理由;
②当m取不小于5的任意实数时,y1、y2、y3一定能作为同一个三角形三边的长,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鄞州区模拟)对于二次函数C:y=
1
2
x2-4x+6和一次函数l:y=-x+6,把y=t(
1
2
x2-4x+6)+(1-t)(-x+6)称为这两个函数的“再生二次函数”,其中,t是不为零的实数,其图象记作抛物线E.设二次函数C和一次函数l的两个交点为A(x1,y1),B(x2,y2)(其中x1<x2).
(1)求点A,B的坐标,并判断这两个点是否在抛物线E上;
(2)二次函数y=-x2+5x+5是二次函数y=
1
2
x2-4x+6和一次函数y=-x+6的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由;
(3)若抛物线E与坐标轴的三个交点围成的三角形面积为6,求抛物线E的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河池)已知二次函数y=-x2+3x-
3
5
,当自变量x取m对应的函数值大于0,设自变量分别取m-3,m+3时对应的函数值为y1,y2,则(  )

查看答案和解析>>

同步练习册答案