精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠ACB=90°,∠B=20°.在同一平面内,将△ABC绕点C旋转到△A′B′C的位置,设旋转角为(0°<<180°).若△A′B′C中恰有一条边与△ABC中的一条边平行,则旋转角的可能的度数为   .                      
20°;70°;110°;160° 
解:∵在△ABC中,∠ACB=90°,∠B=20°,
∴∠A=70°(直角三角形的两个锐角互余);
又∵△A′B′C是由△ABC绕点C旋转α得到的,
∴∠A′=∠A=70°,∠B′=∠B=20°;
①如①所示,当AB∥A′C时,∠A=∠ACA′=α=20°;
②如②所示,当BC∥A′B′时,∠B=∠B′CB=α=70°;
③如③所示,当AB∥B′C时,∠A=∠ACA′=20°,则α=∠ACB+∠ACA′=90°+20°=110°,即α=110°;
④如④所示,当AC∥A′B′时,∠B′=∠ACA′=70°,则α=∠ACB+∠ACA′=90°+70°=160°,即α=160°;
综上所述,旋转角α的可能的度数为20°,70°,110°或160°;
故答案是:20°,70°,110°或160°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,在同一平面内,将两个全等的等腰直角三角形ABCAFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n

(1)请在图1中找出两对相似而不全等的三角形,并选取其中一对证明它们相似;
(2)根据图1,求mn的函数关系式,直接写出自变量n的取值范围;
(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2). 旋转∆AFG,使得BD=CE,求出D点的坐标,并通过计算验证
(4)在旋转过程中,(3)中的等量关系是否始终成立,若成立,请证明,若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列图形,既不是中心对称图形又不是轴对称图形的是(   )

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.
求证:(1)△ADA′≌△CDE;
(2)直线CE是线段AA′的垂直平分线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面镜里看到背后墙上,电子钟示数如图所示,这时的时间应是            

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列图形中,既是轴对称图形,又是中心对称图形的是( )
        
A                 B                  C                D

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在等腰直角△ABC中,,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则=( )
A.60°B.105°C. 120°D. 135°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(每小格均为边长是1的正方形),已知点A、B、C的坐标分别为(0,0)、(3,0)、(4,3),在所给网格图中完成下列各题:
(1)作出△ABC关于y轴对称的△A1B1C1,并写出点B1与点C1的坐标;
(2)作出△ABC绕点A按顺时针方向旋转90°得到的△A2B2C2
(3)求△A2B2C2的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读下面材料,并解决问题:
(1)如下图1,等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5则∠APB=______,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌_______这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.
(2)请你利用第(1)题的解答思想方法,解答下面问题:已知:如图2,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2.

查看答案和解析>>

同步练习册答案