精英家教网 > 初中数学 > 题目详情
如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.
求证:(1)△ADA′≌△CDE;
(2)直线CE是线段AA′的垂直平分线.
证明:(1)∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°。∴∠A′DE=90°。
根据旋转的方法可得:∠EA′D=45°,∴∠A′ED=45°。∴A′D=DE。
∵在△AD A′和△CDE中,AD=CD,∠EDC=∠A′DA=90°,A′D=DE,
∴△ADA′≌△CDE(SAS)。
(2)∵AC=A′C,∴点C在AA′的垂直平分线上。
∵AC是正方形ABCD的对角线,∴∠CAE=45°。
∵AC=A′C,CD=CB′,∴AB′=A′D。
∵在△AEB′和△A′ED中,∠EAB′=∠EA′D,∠AEB′=∠A′ED,AB′=A′D,
∴△AEB′≌△A′ED(AAS)。∴AE=A′E。
∴点E也在AA′的垂直平分线上。∴直线CE是线段AA′的垂直平分线。
正方形的性质,旋转的性质,等腰三角形的判定,全等三角形的判定和性质,线段垂直平分线的判定。
【分析】(1)根据正方形的性质可得AD=CD,∠ADC=90°,∠EA′D=45°,则∠A′DE=90°,再计算出∠A′ED=45°,根据等角对等边可得AD=ED,即可利用SAS证明△AA′D≌△CED。
(2)首先由AC=A′C,可得点C在AA′的垂直平分线上;再证明△AEB′≌△A′ED,可得AE=A′E,从而得到点E也在AA′的垂直平分线上,根据两点确定一条直线可得直线CE是线段AA′的垂直平分线。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图9-1,9-2,△ABC是等边三角形,D、E分别是AB、BC边上的两个动点(与点A、B、C不重合),始终保持BD=CE.

(1)当点D、E运动到如图9-1所示的位置时,求证:CD=AE.
(2)把图9-1中的△ACE绕着A点顺时针旋转60°到△ABF的位置(如图9-2),分别连结DF、EF.
① 找出图中所有的等边三角形(△ABC除外),并对其中一个给予证明;
② 试判断四边形CDFE的形状,并说明理由

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

①如图1,在每个小方格都是边长为1个单位长度的正方形方格纸中有△OAB,
请将△OAB绕点O顺时针旋转90°,画出旋转后的△OA’B’;
②折纸:有一张矩形纸片ABCD(如图2),要将点D沿某条直线翻折180°,恰好落在BC边上的点D’
处,,请在图中作出该直线。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一只小狗正在平面镜前欣赏自己的全身像(如图),此时,它所看到的全身像是

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图13-1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE, AG⊥CE.
(1)当正方形GFED绕D旋转到如图13-2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由.
(2)当正方形GFED绕D旋转到如图13-3的位置,点F在边AD上,延长CE交AG于H,交AD于M.
①求证:AG⊥CH;
②当AD=4,DG=时,求CM的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小红驾驶着摩托车行驶在公路上,他从反光镜中看到后面一辆汽车的车牌为“”,根据有关数学知识,此汽车的牌照为______________

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,∠ACB=90°,∠B=20°.在同一平面内,将△ABC绕点C旋转到△A′B′C的位置,设旋转角为(0°<<180°).若△A′B′C中恰有一条边与△ABC中的一条边平行,则旋转角的可能的度数为   .                      

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将点绕坐标原点顺时针旋转得到点的坐标为___________。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),则B点从开始至结束所走
过的路程长度为____  ____.

查看答案和解析>>

同步练习册答案