精英家教网 > 初中数学 > 题目详情
如图,已知△ABC中,AC=BC,∠ACB=90°,BD平分∠ABC,求证:AB=BC+CD.
分析:过点D作DE⊥AB于点E,由角平分线的性质可知,CD=DE,由全等三角形的判定定理可得△BCD≌△BED,故可得出BC=BE,再根据△ABC是等腰直角三角形可知∠A=45°,故△ADE是等腰直角三角形,所以DE=AE,所以AB=BE+AE=BC+CD.
解答:证明:过点D作DE⊥AB于点E,
∵BD平分∠ABC,
∴CD=DE,
在△BCD与△BED中,
∠DBC=∠DBA
∠C=∠BED=90°
BD=BD

∴△BCD≌△BED(AAS),
∴BC=BE,
∵△ABC是等腰直角三角形,
∴∠A=45°,
∴△ADE是等腰直角三角形,
∴DE=AE=CD,
∴AB=BE+AE=BC+CD.
点评:本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,E、F分别在AB、AC上且AE=CF.
求证:EF≥
12
BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,P是AB上一点,连接CP,以下条件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•梓潼县一模)如图,已知△ABC中,∠C=90°,AC=4,BC=3,则sinA=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,BC=8,BC边上的高h=4,D为BC上一点,EF∥BC交AB于E,交AC于F(EF不过A、B),设E到BC的距离为x,△DEF的面积为y,那么y关于x的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,D是BC中点,则下列结论不正确的是(  )

查看答案和解析>>

同步练习册答案