精英家教网 > 初中数学 > 题目详情

如图,已知抛物线y=x2+bx+c经过A(-1, 0)、B(4, 5)两点,过点B作BC⊥x轴,垂足为C.
(1)求抛物线的解析式;
(2)求tan∠ABO的值;
(3)点M是抛物线上的一个点,直线MN平行于y轴交直线AB于N,如果以M、N、B、C为顶点的四边形是平行四边形,求出点M的横坐标.

(1)y=x2-2x-3.(2),(3)

解析试题分析:(1)将A(-1,0)、B(4,5)分别代入y=x2+bx+c求出b和c的值即可;
(2)过点O作OH⊥AB,垂足为H,根据勾股定理可求出AB的长,进而得到:在Rt△BOH中,tan∠ABO= .
(3)设点M的坐标为(x,x2-2x-3),点N的坐标为(x,x+1),在分两种情况:当点M在点N的上方时和当点M在点N的下方时,则四边形NMCB是平行四边形讨论求出符合题意的点M的横坐标即可.
试题解析::(1)将A(-1,0)、B(4,5)分别代入y=x2+bx+c,得

解得b=-2,c=-3.
∴抛物线的解析式:y=x2-2x-3.
(2)在Rt△BOC中,OC=4,BC=5.
在Rt△ACB中,AC=AO+OC=1+4=5,
∴AC=BC.
∴∠BAC=45°,AB=
如图1,过点O作OH⊥AB,垂足为H.

在Rt△AOH中,OA=1,
∴AH=OH=OA×sin45°=1×=
∴BH=AB-AH=
在Rt△BOH中,tan∠ABO=
(3)直线AB的解析式为:y=x+1.
设点M的坐标为(x,x2-2x-3),
点N的坐标为(x,x+1),
如图2,当点M在点N的上方时,

则四边形MNCB是平行四边形,MN=BC=5.
由MN=(x2-2x-3)-(x+1)=x2-2x-3-x-1=x2-3x-4,
解方程x2-3x-4=5,得x=或x=
②如图3,当点M在点N的下方时,则四边形NMCB是平行四边形,NM=BC=5.

由MN=(x+1)-(x2-2x-3)=x+1-x2+2x+3=-x2+3x+4,
解方程-x2+3x+4=5,得x=或x=
所以符合题意的点M有4个,其横坐标分别为:
考点:二次函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

锐角中,,两动点分别在边上滑动,且,以为边向下作正方形,设其边长为,正方形公共部分的面积为
(1)中边上高         
(2)当        时,恰好落在边上(如图1);
(3)当外部时(如图2),求关于的函数关系式(注明的取值范围),并求出为何值时最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,二次函数)的图象与轴正半轴交于A点.
(1)求证:该二次函数的图象与x轴必有两个交点;
(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;
(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当时,点M关于x轴的对称点都在直线l的下方,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线经过A、C(0,4)两点,与x轴的另一交点是B.
(1)求抛物线的解析式;
(2)若点在第一象限的抛物线上,求点D关于直线BC的对称点的坐标;
(3)在(2)的条件下,过点D作DE⊥BC于点E,反比例函数的图象经过点E,点在此反比例函数图象上,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,直线与抛物线y=ax2+bx-3(a≠0)交于A、B两点,点A在x轴上,点B的纵坐标为5.点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.
(1)求抛物线的解析式;
(2)设点P的横坐标为m.
①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;
②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为1:2.若存在,直接写出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

复习课中,教师给出关于x的函数(k是实数).
教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.
学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:
①存在函数,其图像经过(1,0)点;
②函数图像与坐标轴总有三个不同的交点;
③当时,不是y随x的增大而增大就是y随x的增大而减小;
④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;
教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,抛物线经过A(-1,0),C(3,-2)两点,与轴交于点D,与轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线)将四边形ABCD面积二等分,求的值;
(3)如图2,过点E(1,1)作EF⊥轴于点F,将△AEF绕平面内某点P旋转180°得△MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,求点N和点P的坐标?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC =" 8" cm,BC =" 6" cm,EF =" 9" cm。
如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动。当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移。DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)。解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由。
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由。(图(3)供同学们做题使用)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其中A点坐标为(-1,0), 点C(0,5),点D(1,8)在抛物线上,M为抛物线的顶点.求

(1)抛物线的解析式;
(2)求△MCB的面积.

查看答案和解析>>

同步练习册答案