精英家教网 > 初中数学 > 题目详情

如图:Rt△ABC中,∠ACB=90°,AD=CD,试说明BD=CD.

证明:∵AD=CD,
∴∠A=∠ACD,
∵∠ACB=90°,
∴∠A+∠B=180°-90°=90°,
∠ACD+∠BCD=90°,
∴∠B=∠BCD,
∴BD=CD.
分析:根据等边对等角可得∠A=∠ACD,再根据等角的余角相等求出∠B=∠BCD,然后利用等角对等边证明即可.
点评:本题考查了等腰三角形的性质,等边对等角以及等角的余角相等的性质,熟记各性质并求出∠B=∠BCD是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案