精英家教网 > 初中数学 > 题目详情
精英家教网如图,∠BAC=90°,AB=AC,D点在AC上,E点在BA的延长线上,BD=CE,BD的延长线交CE于F,试证明:BF⊥CE.
分析:先根据HL证明Rt△BAD≌Rt△CAE,从而得出∠ABD=∠ACE,根据角之间的转换从而得到∠BFC=90°,即BF⊥CE.
解答:证明:∵∠BAC=90°,
∴∠CAE=∠BAC=90°.
在Rt△BAD和Rt△CAE中,
BD=CE
AB=AC

∴Rt△BAD≌Rt△CAE(HL),
∴∠ABD=∠ACE,又∠ADB=∠CDF,
∴∠ABD+∠ADB=∠ACE+∠CDF.
又∵∠ABD+∠ADB=90°.
∴∠ACE+∠CDF=90°,
∴∠BFC=90°,
∴BF⊥CE.
点评:此题主要考查全等三角形的判定和性质;发现并利用Rt△BAD≌Rt△CAE是正确解决本题的关键,做题时要充分利用题目中的已知条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,∠BAC=90°,AD⊥BC,△ABE,△ACF都是等边三角形,则S△ABE:S△ACF等于(  )
A、AB:ACB、AD2:DC2C、BD2:DC2D、AC2:AB2

查看答案和解析>>

科目:初中数学 来源: 题型:

6、如图,∠BAC=90°,AD⊥BC,则图中互余的角有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠BAC=90°,AC=AB,直线l与以AB为直径的圆相切于点B,点E是圆上异于A、B的任意一点.精英家教网直线AE与l相交于点D.
(1)如果AD=10,BD=6,求DE的长;
(2)连接CE,过E作CE的垂线交直线AB于F.当点E在什么位置时,相应的F位于线段AB上、位于BA的延长线上、位于AB的延长线上(写出结果,不要求证明).无论点E如何变化,总有BD=BF.请你就上述三种情况任选一种说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(任选做一题)
(1)如图,在平行四边形ABCD中,E是AD上的一点.求证:AE•OB=OE•CB;
精英家教网
(2)已知如图,∠BAC=90°,AD⊥BC,AE=EC,ED延长线交AB的延长线于点F.
求证:①△DBF∽△ADF;②
AB
AC
=
DF
AF

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠BAC=90°,∠C=30°,AD⊥BC于D,DE⊥AB于E,BE=1,BC=
8
8

查看答案和解析>>

同步练习册答案