【题目】已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,连接DE交AC于点F.
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.
(3)在(2)的条件下,若AB=AC=2,求正方形ADCE周长.
【答案】(1)见解析;(2)∠BAC=90°且AB=AC时,四边形ADCE是一个正方形,(3)8.
【解析】
试题分析:(1)根据等腰三角形的性质,可得∠CAD=∠BAC,根据等式的性质,可得∠CAD+∠CAE=(∠BAC+∠CAM)=90°,根据垂线的定义,可得∠ADC=∠CEA,根据矩形的判定,可得答案;
(2)根据等腰直角三角形的性质,可得AD与CD的关系,根据正方形的判定,可得答案;
(3)根据勾股定理,可得AD的长,根据正方形周长公式,可得答案.
(1)证明:∵AB=AC,AD⊥BC,垂足为点D,
∴∠CAD=∠BAC.
∵AN是△ABC外角∠CAM的平分线,
∴∠CAE=∠CAM.
∵∠BAC与∠CAM是邻补角,
∴∠BAC+∠CAM=180°,
∴∠CAD+∠CAE=(∠BAC+∠CAM)=90°.
∵AD⊥BC,CE⊥AN,
∴∠ADC=∠CEA=90°,
∴四边形ADCE为矩形;
(2)∠BAC=90°且AB=AC时,四边形ADCE是一个正方形,
证明:∵∠BAC=90°且AB=AC,AD⊥BC,
∴∠CAD=∠BAC=45,∠ADC=90°,
∴∠ACD=∠CAD=45°,
∴AD=CD.
∵四边形ADCE为矩形,
∴四边形ADCE为正方形;
(3)解:由勾股定理,得
=AB,AD=CD,
即AD=2,
AD=2,
正方形ADCE周长4AD=4×2=8.
科目:初中数学 来源: 题型:
【题目】如图,直线l与坐标轴分别交于A、B两点,∠BAO=45°,点A坐标为(8,0).动点P从点O出发,沿折线段OBA运动,到点A停止;同时动点Q也从点O出发,沿线段OA运动,到点A停止;它们的运动速度均为每秒1个单位长度.
(1)求直线AB的函数关系式;
(2)若点A、B、O与平面内点E组成的图形是平行四边形,请直接写出点E的坐标;
(3)在运动过程中,当P、Q的距离为2时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.
(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是 ;
(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”, 请用树形图或列表法中的一种,求他演唱歌曲“1”和“4”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知地球上海洋面积约为361 000 000km2,361 000 000用科学记数法可表示为( )
A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×109
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设, ,……, ,(n为正整数)
(1)试说明是8的倍数;
(2)若△ABC的三条边长分别为、、(为正整数)
①求的取值范围.
②是否存在这样的,使得△ABC的周长为一个完全平方数,若存在,试举出一例,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com