精英家教网 > 初中数学 > 题目详情
16.设a、b为实数,且$\left|{\left.{\sqrt{2}-a}\right|}\right.+\sqrt{b-2}$=0,求a2-2$\sqrt{2}a+2+{b^2}$的值.

分析 根据题意,利用非负数的性质求出a与b的值,代入原式计算即可得到结果.

解答 解:∵且|$\sqrt{2}$-a|+$\sqrt{b-2}$=0,
∴$\sqrt{2}$-a=0,b-2=0,
解得:a=$\sqrt{2}$,b=2,
则原式=2-4+2+4=4.

点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.利用不等式的基本性质,用“<”或“>”号填空.
①若a<b,则2a<2b;
②若a>b,则-4a<-4b;
③若a>b,c>0,则ac>bc;
④若x<0,y>0,z<0,则(x-y)z>0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,AD是△ABC的中线,E是AC上的一点,BE交AD于F,已知AC=BF,∠DAC=35°,∠EBC=40°,则∠C=70°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.一个面积为42的长方形,其相邻两边长分别为x和y,请你写出与之间的函数解析式,并画出其图象.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,直线x⊥直线y于点O,直线x⊥AB于点B,E是线段AB上一定点,D点为线段OB上的一动点(点D不与点O、B重合),CD⊥DE交直线y于点C,连接AC.
(1)当∠OCD=60°时,求∠BED的度数;
(2)当∠CDO=∠A时,CD⊥AC吗?请说明理由;
(3)若∠BED、∠DCO的角平分线的交点为P,当点D在线段OB上运动时,问∠P的大小是否为定值?若是定值,求其值,并说明理由;若变化,求其变化范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.澳洲科学家称他们发现世界最小、最轻的鱼,取名为胖婴鱼,据说据说这种小型鱼类仅有0.7cm,雌鱼为0.84cm,要一百万尾才能凑足1kg,则一条胖婴鱼成鱼的质量为10-6kg.(用科学记数法表示)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知实数x满足x+$\frac{1}{x}$=3,则x2+$\frac{1}{x^2}$的值为7;已知$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$,则$\frac{2x+y-z}{3x-2y+z}$=$\frac{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC外分别以AB,AC为边作正方形ABDE和正方形ACFG,连接EG,AM是△ABC中BC边上的中线,延长MA交EG于点H,求证:
(1)AM=$\frac{1}{2}$EG;
(2)AH⊥EG;
(3)EG2+BC2=2(AB2+AC2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.小明为一个矩形娱乐场所提供了如下的设计方案,其中半圆形休息区和矩形游泳池以外的地方都是绿地.
(1)游泳池和休息区的面积各是多少?
(2)绿地的面积是多少?
(3)如果这个娱乐场所需要有一半以上的绿地,小明设计的m,n分别是a,b的$\frac{1}{2}$,当a=60米,b=40米时,他的设计方案符合要求吗?(π取值为3)

查看答案和解析>>

同步练习册答案