精英家教网 > 初中数学 > 题目详情

如果数学公式,那么下列结论正确的是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:由,可知四边形ABCD是平行四边形,根据相等向量的定义即可作出判断.
解答:∵
∴四边形ABCD是平行四边形,
A、长度相等,方向相反,不相等,故本选项错误;
B、长度相等且方向相同,相等,正确;
C、长度不一定相等,方向不同,不相等,故本选项错误;
D、长度不一定相等,方向不同,不相等,故本选项错误.
故选B.
点评:本题考查了平行四边形的性质和相等向量的定义.长度相等且方向相同的向量叫做相等向量.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90度.
(1)判断下列命题的真假(在相应的括号内填上“真”或“假”).
①等腰梯形是旋转对称图形,它有一个旋转角为180度.(

②矩形是旋转对称图形,它有一个旋转角为180°.(

(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是
①,③
(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形.
(3)写出两个多边形,它们都是旋转对图形,都有一个旋转角为72°,并且分别满足下列条件
①是轴对称图形,但不是中心对称图形:
如正五边形、正十五边形

②既是轴对称图形,又是中心对称图形:
如正十边形、正二十边形

查看答案和解析>>

科目:初中数学 来源: 题型:

数学家们通过长期的研究,得到了关于“等周问题”的重要结论:在周长相同的所有封闭平面曲线中,以圆所围成的面积最大.
“等周问题”虽然较为繁杂,但其根本思想基于下面2个事实:
事实1:等周长n边形的面积,当图形为正n边形时,其面积最大;
事实2:等周长n边形的面积,当边数n越大时,其面积也越大.
为了理解这些事实的合理性,曙光数学小组走出校门展开了下列课题研究.请你帮助他们解决其中的一些问题.
现有长度为100m的篱笆(可弯曲围成一个区域).
(1)如果用篱笆围成一个长方形鸡场,怎样围才能使鸡场的面积最大?为什么?
(2)如果用篱笆围成一个正五边形鸡场,那么与(1)中的正方形鸡场比较,哪个面积更大?请在事实1的基础上证明事实2:“等周长n边形的面积,当边数n越大时,其面积也越大.”
(3)利用事实1和事实2,请对“等周问题”的重要结论作出较为合理的解释.
(4)爱动脑筋的小明提出一个问题:如果借用一条充分长的直墙,将篱笆围成一个四边形鸡场,为了使鸡场的面积尽量大,所围成的长方形鸡场的长是宽的2倍(如图).你觉得他讲的是否有道理?你有没有更好的方法,使围成的四边形鸡场的面积更大?如果有,请说明你的方法.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京二模)在平面内,如果一个图形绕一个定点旋转一个角度α(α<360°)后,能与自身重合,那么就称这个图形是旋转对称图形,α为这个旋转对称图形的一个旋转角.例如,正方形绕着它的对角线交点旋转90°、180°、270°都能与自身重合,所以正方形是旋转对称图形,90°、180°、270°都可以是这个旋转对称图形的一个旋转角.请依据上述规定解答下列问题:
(1)判断下列命题的真假:
①等腰梯形是旋转对称图形.
②平行四边形是旋转对称图形.
(2)下列图形中,是旋转对称图形,且有一个旋转角是120°的是
①③
①③
(写出所有正确结论前的序号).
①等边三角形      ②有一个角是60°的菱形      ③正六边形      ④正八边形
(3)正五边形显然满足下面两个条件:
①是旋转对称图形,且有一个旋转角是72°.
②是轴对称图形,但不是中心对称图形.
思考:还有什么图形也同时满足上述两个条件?请说出一种.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,并回答问题.
画一个直角三角形,使它的两条直角边分别为5和12,那么我们可以量得直角三角形的斜边长为13,并且52+122=132.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方.如果直角三角形中,两直角边长分别为a、b,斜边长为c,则a2+b2=c2,这个结论就是著名的勾股定理.
请利用这个结论,完成下面的活动:
(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为
10
10

(2)满足勾股定理方程a2+b2=c2的正整数组(a,b,c)叫勾股数组.例如(3,4,5)就是一组勾股数组.观察下列几组勾股数
①3,4,5; ②5,12,13; ③7,24,25;④9,40,41;
请你写出有以上规律的第⑤组勾股数:
11,60,61
11,60,61

(3)如图,AD⊥BC于D,AD=BD,AC=BE.AC=3,DC=1,求BD的长度.

(4)如图,点A在数轴上表示的数是
-
5
-
5
,请用类似的方法在下图数轴上画出表示数
3
的B点(保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,是某市公园周围街巷的示意图,A点表示1街与2巷的十字路口,B点表示3街与5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A点到B点的一条路径,那么,你能同样的方法写出由A点到B点尽可能近的其他两条路径吗?

(2)从正三角形、正四边形、正五边形、正六边形、正八边形、正十边形、正十二边形中任选两种正多边形镶嵌,请全部写出这两种正多边形.并从其中任选一种探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.
(3)如图2所示,已知AB∥CD,分别探索下列四个图形中∠P(均为小于平角的角)与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.
(4)阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.如图3给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形.
请你按照上述方法将图4中的六边形进行分割,并写出得到的小三角形的个数以及求出每个图形中的六边形的内角和.试把这一结论推广至n边形,并推导出n边形内角和的计算公式.

查看答案和解析>>

同步练习册答案