精英家教网 > 初中数学 > 题目详情

将点A(4,1)绕原点O按顺时针方向旋转90°到点B,则点B的坐标是


  1. A.
    (1,-4)
  2. B.
    (4,-1)
  3. C.
    (-4,1)
  4. D.
    (-1,4)
A
分析:作出图形,过点A作AC⊥x轴,过点B作BD⊥y轴,根据旋转前后的两个图形的形状与大小不变可得OD、BD的长度,然后即可得解.
解答:解:如图所示,过点A作AC⊥x轴,过点B作BD⊥y轴,
∵点A(4,1),
∴OC=4,AC=1,
∵点A绕原点O旋转90°得到点B,
∴OD=OC=4,BD=AC=1,
∴点B的坐标是(1,-4).
故选A.
点评:本题考查了旋转变换与坐标与图形的变化,旋转变换只改变图形的位置,不改变图形形状与大小,作出图形利用数形结合使问题的求解更加形象直观.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、复习“全等三角形”的知识时,老师布置了一道作业题:“如下图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使得∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”
(1)小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.请你帮小亮完成证明.
(2)之后,小亮又将点P移到等腰三角形ABC之外,原题中的条件不变,“BQ=CP”仍然成立吗?若成立,请你就图②给出证明.若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及
PG
PC
的值.
小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:
(1)写出上面问题中线段PG与PC的位置关系及
PG
PC
的值;
(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明;
(3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,精英家教网原问题中的其他条件不变,请你直接写出
PG
PC
的值(用含α的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图(1)已知在△ABC中,AB=AC,P是△ABC内任意一点将AP绕点A顺时针旋转到AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP,请证明;
若将点P移到等腰ABC之外,原题中其它条件不变,上面的结论是否成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图(1)已知在△ABC中,AB=AC,P是△ABC内任意一点将AP绕点A顺时针旋转到AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP,请证明;
若将点P移到等腰ABC之外,原题中其它条件不变,上面的结论是否成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省连云港市中考数学原创试卷大赛(48)(解析版) 题型:解答题

如图(1)已知在△ABC中,AB=AC,P是△ABC内任意一点将AP绕点A顺时针旋转到AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP,请证明;
若将点P移到等腰ABC之外,原题中其它条件不变,上面的结论是否成立?请说明理由.

查看答案和解析>>

同步练习册答案