精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数图象的顶点坐标为(0,1),且过点(﹣1, ),直线y=kx+2与y轴相交于点P,与二次函数图象交于不同的两点A(x1 , y1),B(x2 , y2). (注:在解题过程中,你也可以阅读后面的材料)
附:阅读材料
任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.
即:设一元二次方程ax2+bx+c=0的两根为x1 , x2
则:x1+x2=﹣ ,x1x2=
能灵活运用这种关系,有时可以使解题更为简单.
例:不解方程,求方程x2﹣3x=15两根的和与积.
解:原方程变为:x2﹣3x﹣15=0
∵一元二次方程的根与系数有关系:x1+x2=﹣ ,x1x2=
∴原方程两根之和=﹣ =3,两根之积= =﹣15.

(1)求该二次函数的解析式.
(2)对(1)中的二次函数,当自变量x取值范围在﹣1<x<3时,请写出其函数值y的取值范围;(不必说明理由)
(3)求证:在此二次函数图象下方的y轴上,必存在定点G,使△ABG的内切圆的圆心落在y轴上,并求△GAB面积的最小值.

【答案】
(1)解:由于二次函数图象的顶点坐标为(0,1),

因此二次函数的解析式可设为y=ax2+1.

∵抛物线y=ax2+1过点(﹣1, ),

=a+1.

解得:a=

∴二次函数的解析式为:y= x2+1


(2)解:当x=﹣1时,y=

当x=0时,y=1,

当x=3时,y= ×32+1=

结合图1可得:当﹣1<x<3时,y的取值范围是1≤y<


(3)①证明:过点A作y轴的对称点A′,连接BA′并延长,交y轴于点G,连接AG,如图2,

则点A′必在抛物线上,且∠AGP=∠BGP,

∴△ABG的内切圆的圆心落在y轴上.

∵点A的坐标为(x1,y1),

∴点A′的坐标为(﹣x1,y1).

∵点A(x1,y1)、B(x2,y2)在直线y=kx+2上,

∴y1=kx1+2,y2=kx2+2.

∴点A′的坐标为(﹣x1,kx1+2)、点B的坐标为(x2,kx2+2).

设直线BG的解析式为y=mx+n,则点G的坐标为(0,n).

∵点A′(﹣x1,kx1+2)、B(x2,kx2+2)在直线BG上,

解得:

∵A(x1,y1),B(x2,y2)是直线y=kx+2与抛物线y= x2+1的交点,

∴x1、x2是方程kx+2= x2+1即x2﹣4kx﹣4=0的两个实数根.

∴由根与系数的关系可得;x1+x2=4k,x1x2=﹣4.

∴n= =﹣2+2=0.

∴点G的坐标为(0,0).

∴在此二次函数图象下方的y轴上,存在定点G(0,0),使△ABG的内切圆的圆心落在y轴上.

②解:过点A作AC⊥OP,垂足为C,过点B作BD⊥OP,垂足为D,如图2,

∵直线y=kx+2与y轴相交于点P,

∴点P的坐标为(0,2).

∴PG=2.

∴SABG=SAPG+SBPG

= PGAC+ PGBD

= PG(AC+BD)

= ×2×(﹣x12

=x2﹣x1

=

=

=

=4

∴当k=0时,SABG最小,最小值为4.

∴△GAB面积的最小值为4.


【解析】(1)设二次函数解析式为y=ax2+1,由于点(﹣1, )在二次函数图象上,把该点的坐标代入y=ax2+1,即可求出a,从而求出二次函数的解析式.(2)先分别求出x=﹣1,x=0,x=3时y的值,然后结合图象就可得到y的取值范围.(3)过点A作y轴的对称点A′,连接BA′并延长,交y轴于点G,连接AG,如图2,则点A′必在抛物线上,且∠AGP=∠BGP,由此可得△ABG的内切圆的圆心落在y轴上.由于点A(x1 , y1)、B(x2 , y2)在直线y=kx+2上,从而可以得到点A的坐标为(x1 , kx1+2)、A′的坐标为(﹣x1 , kx1+2)、B的坐标为(x2 , kx2+2).设直线BG的解析式为y=mx+n,则点G的坐标为(0,n).由于点A′(﹣x1 , kx1+2)、B(x2 , kx2+2)在直线BG上,可用含有k、x1、x2的代数式表示n.由于A、B是直线y=kx+2与抛物线y= x2+1的交点,由根与系数的关系可得:x1+x2=4k,x1x2=﹣4.从而求出n=0,即可证出:在此二次函数图象下方的y轴上,存在定点G(0,0),使△ABG的内切圆的圆心落在y轴上.由SABG=SAPG+SBPG , 可以得到SABG=x2﹣x1= =4 ,所以当k=0时,SABG最小,最小值为4.
【考点精析】认真审题,首先需要了解根与系数的关系(一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商),还要掌握确定一次函数的表达式(确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC在直角坐标系中。

(1)请写出ABC各点的坐标;

(2)求出ABC的面积SABC

(3)若把ABC向上平移2个单位,再向右平移2个单位得A1B1C1,在图中画出A1B1C1,并写出A1B1C1的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】端午节三天假期的某一天,小明全家上午8时自驾小汽车从家里出发,到章丘某旅游景点游玩.该小汽车离家的距离S(千米)与时间t(小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是( )

A. 景点离小明家180千米 B. 小明到家的时间为17点

C. 返程的速度为60千米每小时 D. 10点至14点,汽车匀速行驶

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.在数轴上若点AB分别表示有理数ab ,在数轴上AB两点之间的距离AB=| a-b | .结合数轴与绝对值的知识回答下列问题:

(1)数轴上表示﹣3和2的两点之间的距离是_____;数轴上表示 x 和 -3 两点之间的距离是_____

(2)若a表示一个有理数,则|a+4|+|a﹣2|有最小值吗?若有,请求出最小值;若没有,请说明理由;

(3)当a =_____时,|a+4|+|a﹣1|+|a﹣2|的值最小,最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC的角平分线AD交BC于E,交△ABC的外接圆⊙O于D.
(1)求证:△ABE∽△ADC;
(2)请连接BD,OB,OC,OD,且OD交BC于点F,若点F恰好是OD的中点.求证:四边形OBDC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:
①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac
其中正确的结论的有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列四个结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△AED的周长是9.其中正确的结论是(把你认为正确结论的序号都填上.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】洋芋是大多数云南人都喜爱的食品,现有20袋洋芋,以每袋450斤为标准,超过或不足的斤数分别用正、负数来表示,与标准质量的差值记录如表:

每袋与标准质量的差值(斤)

﹣5

﹣2

0

1

3

6

袋数

1

4

3

4

5

3

(1)这20袋洋芋中,最重的一袋比最轻的一袋重几斤?

(2)这20袋洋芋的平均质量比标准质量多还是少?多或少几斤?

(3)求这20袋洋芋的总质量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1+2,善于思考的小明进行了以下探索:
设a+b=(m+n2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,这样小明就找到了一种把部分a+b的式子化为平方式的方法。
请我仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b=(m+n2,用含m、n的式子分别表示a、b,得a=________, b=___________.

(2)若a+4=(m+n2,且a、m、n均为正整数,求a的值。

查看答案和解析>>

同步练习册答案