精英家教网 > 初中数学 > 题目详情

【题目】洋芋是大多数云南人都喜爱的食品,现有20袋洋芋,以每袋450斤为标准,超过或不足的斤数分别用正、负数来表示,与标准质量的差值记录如表:

每袋与标准质量的差值(斤)

﹣5

﹣2

0

1

3

6

袋数

1

4

3

4

5

3

(1)这20袋洋芋中,最重的一袋比最轻的一袋重几斤?

(2)这20袋洋芋的平均质量比标准质量多还是少?多或少几斤?

(3)求这20袋洋芋的总质量.

【答案】(1)11斤;(2)多1.2斤;(3)9024斤.

【解析】

(1)找出最重的与最轻的,即可求出差值;
(2)求出平均质量,比较标准即可;
(3)求出总重量即可.

(1)根据题意得:最重的一袋为456斤,最轻的一袋为445斤,

则这20袋洋芋中,最重的一袋比最轻的一袋重11斤;

(2)根据题意得:52×4+0×3+1×4+3×5+6×3=24,

2420=1.2()

这20袋洋芋的平均质量比标准质量多,多1.2斤.

(3)根据题意得:450×20+24=9024(),

则这20袋洋芋的总质量9024.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图的方式拼成一个正方形.

(1)图中的大正方形的边长为   ;阴影部分的正方形的边长为   

(2)请用两种方式表示图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数图象的顶点坐标为(0,1),且过点(﹣1, ),直线y=kx+2与y轴相交于点P,与二次函数图象交于不同的两点A(x1 , y1),B(x2 , y2). (注:在解题过程中,你也可以阅读后面的材料)
附:阅读材料
任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.
即:设一元二次方程ax2+bx+c=0的两根为x1 , x2
则:x1+x2=﹣ ,x1x2=
能灵活运用这种关系,有时可以使解题更为简单.
例:不解方程,求方程x2﹣3x=15两根的和与积.
解:原方程变为:x2﹣3x﹣15=0
∵一元二次方程的根与系数有关系:x1+x2=﹣ ,x1x2=
∴原方程两根之和=﹣ =3,两根之积= =﹣15.

(1)求该二次函数的解析式.
(2)对(1)中的二次函数,当自变量x取值范围在﹣1<x<3时,请写出其函数值y的取值范围;(不必说明理由)
(3)求证:在此二次函数图象下方的y轴上,必存在定点G,使△ABG的内切圆的圆心落在y轴上,并求△GAB面积的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OAOC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数x0k≠0)的图像经过线段BC的中点D.

1)求k的值;

2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点PPRy轴于点R,PQBC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A=3a2b2ab2+abc,小明同学错将“2A﹣B“看成”2A+B“,算得结果为4a2b3ab2+4abc

(1)计算B的表达式;

(2)求出2AB的结果;

(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=b=

(2)中式子的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC.

(1)作出△ABC以O为旋转中心,顺时针旋转90°的△A1B1C1 , (只画出图形).
(2)作出△ABC关于原点O成中心对称的△A2B2C2 , (只画出图形),写出B2和C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数图象如图所示,根据图象可得:

(1)抛物线顶点坐标
(2)对称轴为
(3)当x=时,y有最大值是
(4)当时,y随着x得增大而增大.
(5)当时,y>0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,左面的几何体叫三棱柱,它有五个面,条棱,个顶点,中间和右边的几何体分别是四棱柱和五棱柱.

四棱柱有________个顶点,________条棱,________个面;

五棱柱有________个顶点,________条棱,________个面;

你能由此猜出,六棱柱、七棱柱各有几个顶点,几条棱,几个面吗?

棱柱有几个顶点,几条棱,几个面吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,B=90°,AC=60cmA=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DFBC于点F,连接DE,EF.

(1)求证:AE=DF;

(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;

(3)当t为何值时,DEF为直角三角形?请说明理由.

查看答案和解析>>

同步练习册答案