精英家教网 > 初中数学 > 题目详情

【题目】如图,左面的几何体叫三棱柱,它有五个面,条棱,个顶点,中间和右边的几何体分别是四棱柱和五棱柱.

四棱柱有________个顶点,________条棱,________个面;

五棱柱有________个顶点,________条棱,________个面;

你能由此猜出,六棱柱、七棱柱各有几个顶点,几条棱,几个面吗?

棱柱有几个顶点,几条棱,几个面吗?

【答案】(1)8, 12,6;(2)10,15,7;(3)六棱柱有个顶点,条棱,个面;七棱柱有个顶点,条棱,个面;(4)n棱柱有个面,个顶点和条棱.

【解析】

结合已知三棱柱、四棱柱和五棱柱的特点,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱.

解:(1)四棱柱有8个顶点,12条棱,6个面;

(2)五棱柱有10个顶点,15条棱,7个面;

六棱柱有个顶点,条棱,个面;

七棱柱有个顶点,条棱,个面;

棱柱有个面,个顶点和条棱.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.在数轴上若点AB分别表示有理数ab ,在数轴上AB两点之间的距离AB=| a-b | .结合数轴与绝对值的知识回答下列问题:

(1)数轴上表示﹣3和2的两点之间的距离是_____;数轴上表示 x 和 -3 两点之间的距离是_____

(2)若a表示一个有理数,则|a+4|+|a﹣2|有最小值吗?若有,请求出最小值;若没有,请说明理由;

(3)当a =_____时,|a+4|+|a﹣1|+|a﹣2|的值最小,最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】洋芋是大多数云南人都喜爱的食品,现有20袋洋芋,以每袋450斤为标准,超过或不足的斤数分别用正、负数来表示,与标准质量的差值记录如表:

每袋与标准质量的差值(斤)

﹣5

﹣2

0

1

3

6

袋数

1

4

3

4

5

3

(1)这20袋洋芋中,最重的一袋比最轻的一袋重几斤?

(2)这20袋洋芋的平均质量比标准质量多还是少?多或少几斤?

(3)求这20袋洋芋的总质量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上有 A、B 两点,所表示的有理数分别为 ab,已知 AB=12,原点 O 是线段AB 上的一点,且 OA=2OB.

1ab

2若动点 PQ 分别从 AB 同时出发,向右运动,点 P 的速度为每秒 2 个单位长度,点 Q 的速度为每秒 1 个单位长度,设运动时间为 t 秒,当点 P 与点 Q 重合时,PQ 两点停止运动.

①当 t 为何值时,2OPOQ=4

②当点 P 到达点 O 时,动点 M 从点 O 出发,以每秒 3 个单位长度的速度也向右运动,当点 M 追上点 Q 后立即返回,以同样的速度向点 P 运动,遇到点 P 后再立即返回,以同样的速度向点 Q 运动,如此往返,直到点 PQ 停止时,点 M 也停止运动,求在此过程中点 M 行驶的总路程,并直接写出点 M 最后位置在数轴上所对应的有理数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当m为何值时,关于x的一元二次方程(2m+1)x2+4mx+2m﹣3=0.
(1)有两个不相等的实数根;
(2)有两个相等的实数根;
(3)没有实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,设正方体ABCDA1B1C1D1的棱长为1,黑、白两个甲壳虫同时从A点出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是:

白甲壳虫爬行的路线是:那么当黑、白两个甲壳虫各爬行完第2008条棱分别停止在所到的正方体顶点处时,它们之间的距离是(  )

[Failed to download image : http://192.168.0.10:8086/QBM/2018/6/4/1959595487502336/null/STEM/846c38f1abae464caa886400e123363c.png]

A. 0 B. 1 C. √2 D. √3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1+2,善于思考的小明进行了以下探索:
设a+b=(m+n2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,这样小明就找到了一种把部分a+b的式子化为平方式的方法。
请我仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b=(m+n2,用含m、n的式子分别表示a、b,得a=________, b=___________.

(2)若a+4=(m+n2,且a、m、n均为正整数,求a的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,AB=AC.

(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;

(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的长;

(3)如图3,在△ADE中,当BD垂直平分AE于H,且∠BAC=2∠ADB时,试探究CD2,BD2,AH2之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,BC=AC∠C=90°,直角顶点Cx轴上,一锐角顶点By轴上.

1)如图AD于垂直x轴,垂足为点D.点C坐标是(﹣10),点A的坐标是(﹣31),求点B的坐标.

2)如图,直角边BC在两坐标轴上滑动,若y轴恰好平分∠ABCACy轴交于点D,过点AAE⊥y轴于E,请猜想BDAE有怎样的数量关系,并证明你的猜想.

3)如图,直角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y轴于F,在滑动的过程中,请猜想OCAFOB之间有怎样的关系(直接写出结论,不需要证明)

查看答案和解析>>

同步练习册答案