精英家教网 > 初中数学 > 题目详情

如图,点B、D 在直线MN上.已知∠1=∠2,请你再添上一个条件,使AB∥CD成立.并说明理由.
(1)你所添的一个条件是:________;
(2)说明你的理由.

解:(1)故答案为:答案不唯一.如:EB∥FD或EB⊥MN、FD⊥MN.

(2)若EB∥FD.
证明:∵EB∥FD,
∴∠EBM=∠FDM,
∵∠1=∠2,
∴∠ABM=∠CDM,
∴AB∥CD;

若EB⊥MN、FD⊥MN,
证明:∵EB⊥MN、FD⊥MN,
∴∠EBM=∠FDM=90°,
∵∠1=∠2,
∴∠ABM=∠CDM,
∴AB∥CD.
分析:(1)此题答案不唯一,只要证得∠ABM=∠CDM即可,根据同位角相等,两直线平行,即可证得AB∥CD;
(2)由EB∥DF,易证得∠ABM=∠CDM,又由同位角相等,两直线平行,即可证得AB∥CD.
点评:此题考查了平行线的性质.注意同位角相等,两直线平行.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

23、(1)如图1,已知直线m∥n,A,B为直线n上的两点,C,D为直线m上的两点.
①请你判断△ABC与△ABD的面积具有怎样的关系?
②若点D在直线m上可以任意移动,△ABD的面积是否发生变化?并说明你的理由.
(2)如图2,已知:在四边形ABCD中,连接AC,过点D作EF∥AC,P为EF上任意一点(与点D不重合).请你说明四边形ABCD的面积与四边形ABCP的面积相等.
(3)如图3是一块五边形花坛的示意图.为了使其更规整一些,园林管理人员准备将其修整为四边形,根据花坛周边的情况,计划在BC的延长线上取一点F,沿EF取直,构成新的四边形ABFE,并使得四边形ABFE的面积与五边形ABCDE的面积相等.请你在图3中画出符合要求的四边形ABFE,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•龙湾区一模)如图,热气球从山顶A竖直上升至点B需25秒,点D在地面上,DC⊥AB,垂足为C,从地面上点D分别仰视A,B两点,测得∠ADC=20°,∠BDC=60°,若CD=130米.求该热气球从山顶A竖直上升至点B的平均速度.(结果精确到0.1米/秒)
(参考数据:tan20°≈0.36,tan30°=0.58,tan60°≈1.73,tan70°≈2.75)

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省金华四中九年级毕业生学业考试模拟数学卷(带解析) 题型:解答题

如图1,在等腰梯形ABCO中,ABCOEAO的中点,过点EEFOCBCFAO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OCx轴正半轴上,点AB在第一象限内.
(1)求点E的坐标及线段AB的长;
(2)点P为线段EF上的一个动点,过点PPMEFOC于点M,过MMNAO交折线ABC于点N,连结PN,设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;

(3)另有一直角梯形EDGHHEF上,DG落在OC上,∠EDG=90°,且DG=3,HGBC.现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为EDGH′(如图3);试探究:在运动过程中,等腰梯ABCO与直角梯形EDGH′重合部分的面积y与时间t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2012届浙江省九年级毕业生学业考试模拟数学卷(解析版) 题型:解答题

如图1,在等腰梯形ABCO中,ABCOEAO的中点,过点EEFOCBCFAO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OCx轴正半轴上,点AB在第一象限内.

(1)求点E的坐标及线段AB的长;

(2)点P为线段EF上的一个动点,过点PPMEFOC于点M,过MMNAO交折线ABC于点N,连结PN,设PE=x.△PMN的面积为S.

①求S关于x的函数关系式;

②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;

(3)另有一直角梯形EDGHHEF上,DG落在OC上,∠EDG=90°,且DG=3,HGBC.现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为EDGH′(如图3);试探究:在运动过程中,等腰梯ABCO与直角梯形EDGH′重合部分的面积y与时间t的函数关系式.

 

查看答案和解析>>

同步练习册答案