精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,正方形ABCD的顶点分别为A01),B-10),C0-1),D10).对于图形M,给出如下定义:P为图形M上任意一点,Q为正方形ABCD边上任意一点,如果PQ两点间的距离有最大值,那么称这个最大值为图形M正方距,记作

1)已知点

①直接写出的值;

②直线x轴交于点F,当取最小值时,求k的取值范围;

2的圆心为 ,半径为1.若,直接写出t的取值范围.

【答案】(1)①5.②见解析;(2)

【解析】

(1) ①根据题意 是指点 到正方形上动点的最大距离,所以当点与点重合时,此时最大为

②根据的最小值是,可知,所以当直线经过,即可求出的值;

(2)根据圆心 ,半径为 ,可知圆在直线的直线上动,因为圆上动点到正方形边上动点的最大值,所以可以转化成 圆的半径圆心到正方形边上动点,因为,可以算出的分界点,由于圆心到点Q的最大值存在一种情况时,可以计算出,刚好,即可求出符合题意 的取值范围.

解:1.①由根据题意 是指点 到正方形上动点的最大距离,所以当点与点重合时,此时最大,即

②如图所示:

当点的横坐标在 时,,

当点的横坐标在时, ,

要取最小值,

∴符合题意的点F满足

∴当直线经过点的坐标为和点的坐标为是分别求得

结合函数图象可得

2)由题意可知:

可计算当时,

当圆心轴左侧时

可以考虑到当时,

利用两点之间的距离公式:

求得:

时,,即

当圆心轴右侧时

可以考虑到当时,

利用两点之间的距离公式:

求得:

时,,即

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家为了实现2020年全面脱贫目标,实施“精准扶贫”战略,采取异地搬迁,产业扶持等措施.使贫困户的生活条件得到改善,生活质量明显提高.某旗县为了全面了解贫困县对扶贫工作的满意度情况,进行随机抽样调查,分为四个类别:A.非常满意;B.满意;C.基本满意;D.不满意.依据调查数据绘制成图1和图2的统计图(不完整).

根据以上信息,解答下列问题:

(1)将图1补充完整;

(2)通过分析,贫困户对扶贫工作的满意度(A、B、C类视为满意)是  

(3)市扶贫办从该旗县甲乡镇3户、乙乡镇2户共5户贫困户中,随机抽取两户进行满意度回访,求这两户贫困户恰好都是同一乡镇的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.

(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是________.

(2)若甲、乙均可在本层移动.

①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率________

②黑色方块所构拼图是中心对称图形的概率是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,函数的图象经过点,直线x轴交于点

1)求的值;

2)过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D

①当时,判断线段PDPC的数量关系,并说明理由;

②若,结合函数的图象,直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况;举了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绒(为整数,总分100分),绘制了如下尚不完整的统计图表.

根据以上信息解答下列问题:

1)统计表中________________________

2)扇形统计图中,的值为________,“”所对应的圆心角的度数是________(度);

3)若参加本次大赛的同学共有4000人,请你估计成绩在80分及以上的学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是(  )

A. 若AD⊥BC,则四边形AEDF是矩形

B. 若AD垂直平分BC,则四边形AEDF是矩形

C. 若BD=CD,则四边形AEDF是菱形

D. 若AD平分∠BAC,则四边形AEDF是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,点上,,以为直径作于点,交于点,且点为切点,连接.

1)求证:平分

2)求阴影部分面积.(结果保留

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知点A40),O为坐标原点P是线段OA上任意一点不含端点OA),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下它们的顶点分别为B、C射线OB与AC相交于点D当OD=AD=3时这两个二次函数的最大值之和等于( )

A B. C.3 D.4

查看答案和解析>>

同步练习册答案