精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,AB=AC,D为BC上一点,且AB=BD,AD=DC,求∠BAC的度数.

解:∵AB=AC=BD,AD=DC,
∴∠B=∠C=∠DAC,∠BAD=∠BDA,
设∠B=∠C=∠DAC=x,则∠BAD=∠BDA=∠C+∠DAC=2x,
∵∠B+∠C+∠BAC=180°,即x+x+2x+x=180°,
解得x=36°,
∴∠B=∠C=∠DAC=36°,
∴∠BAD=∠BDA=72°,
∴∠BAC=∠BAD+∠DAC=72°+36°=108°.
分析:由AB=AC,AB=BD,得到AB=AC=BD,且AD=DC,利用等边对等角得到∠B=∠C=∠DAC,∠BAD=∠BDA,设∠B=∠C=∠DAC=x,由外角性质得到∠BAD=∠BDA=∠C+∠DAC=2x,在三角形ABC中,利用三角形的内角和定理列出关于x的方程,求出方程的解得到x的值,确定出∠BAD与∠DAC的度数,由∠BAD+∠DAC即可求出∠BAC的度数.
点评:此题考查了等腰三角形的性质,三角形的外角性质,利用了方程的思想,其中等腰三角形的性质即为等边对等角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案