精英家教网 > 初中数学 > 题目详情
14.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:
①△AED≌△DFB;②S四边形BCDG=$\frac{\sqrt{3}}{2}$CG2;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.
其中正确的结论个数为(  )
A.4B.3C.2D.1

分析 ①先证明△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;
②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S四边形BCDG=S四边形CMGN,易求后者的面积;
③过点F作FP∥AE于P点,根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF;
④因为点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,当点E,F分别是AB,AD中点时,CG⊥BD;
⑤∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°.

解答 解:①∵ABCD为菱形,∴AB=AD,
∵AB=BD,∴△ABD为等边三角形,
∴∠A=∠BDF=60°,
又∵AE=DF,AD=BD,
∴△AED≌△DFB,故本选项正确;

②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,
即∠BGD+∠BCD=180°,
∴点B、C、D、G四点共圆,
∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,
∴∠BGC=∠DGC=60°,
过点C作CM⊥GB于M,CN⊥GD于N(如图1),
则△CBM≌△CDN(AAS),
∴S四边形BCDG=S四边形CMGN,
S四边形CMGN=2S△CMG
∵∠CGM=60°,
∴GM=$\frac{1}{2}$CG,CM=$\frac{\sqrt{3}}{2}$CG,
∴S四边形CMGN=2S△CMG=2×$\frac{1}{2}$×$\frac{1}{2}$CG×$\frac{\sqrt{3}}{2}$CG=$\frac{\sqrt{3}}{4}$CG2,故本选项错误;

③过点F作FP∥AE交DE于P点(如图2),
∵AF=2FD,
∴FP:AE=DF:DA=1:3,
∵AE=DF,AB=AD,
∴BE=2AE,
∴FP:BE=FP:2AE=1:6,
∵FP∥AE,
∴PF∥BE,
∴FG:BG=FP:BE=1:6,
即BG=6GF,故本选项正确;

④当点E,F分别是AB,AD中点时(如图3),
由(1)知,△ABD,△BDC为等边三角形,
∵点E,F分别是AB,AD中点,
∴∠BDE=∠DBG=30°,
∴DG=BG,
在△GDC与△BGC中,
$\left\{\begin{array}{l}{DG=BG}\\{CG=CG}\\{CD=CB}\end{array}\right.$,
∴△GDC≌△BGC,
∴∠DCG=∠BCG,
∴CH⊥BD,即CG⊥BD,故本选项错误;

⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,
故本选项正确;
综上所述,正确的结论有①③⑤,共3个,
故选B.

点评 此题综合考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,作出辅助线构造出全等三角形,把不规则图形的面转化为两个全等三角形的面积是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.酒驾猛于虎,但很多人不以为是,为了加强人们对酒驾危害的认识,交警部门加大了对酒驾的检查力度.某市交警在2015年2月28日这天对本市各大主要交通路口进行车辆检查,如图,AC是该市解放路的一段,AE,BF,CD都是南北方向的街道,与解放路AC的交叉路口分别是A,B,C.已知出警点D位于点A的北偏东45°方向、点B的北偏东30°方向上,BD=2km,∠DBC=30°.
(1)求A、B的距离;
(2)第一组交警负责路口A,求该组从出警点D到路口A的路程(行驶路线为D--C--B--A).(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列几何体的主视图与其他三个不同的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5$\sqrt{5}$,且$\frac{OD}{OE}$=$\frac{4}{3}$,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=-$\frac{1}{16}$x2+$\frac{1}{2}$x+c经过点E,且与AB边相交于点F.
(1)求证:△ABD∽△ODE;
(2)若M是BE的中点,连接MF,求证:MF⊥BD;
(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:
32 39 45 55 60 54 60 28 56 41
51 36 44 46 40 53 37 47 45 46
(1)前10株西红柿秧上小西红柿个数的平均数是47,中位数是49.5,众数是60;
(2)若对这20个数按组距为8进行分组,请补全频数分布表及频数分布直方图
个数分组28≤x<3636≤x<4444≤x<5252≤x<6060≤x<68
频数25742
(3)通过频数分布直方图试分析此大棚中西红柿的长势.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=2,则线段ON的长为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.1D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.甲、乙两布袋装有红、白两种小球,两袋装球总数量相同,两种小球仅颜色不同.甲袋中,红球个数是白球个数的2倍;乙袋中,红球个数是白球个数的3倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是(  )
A.$\frac{5}{12}$B.$\frac{7}{12}$C.$\frac{17}{24}$D.$\frac{2}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是(  )
A.70°B.60°C.55°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是(  )
A.∠A=∠DB.AB=DCC.∠ACB=∠DBCD.AC=BD

查看答案和解析>>

同步练习册答案