精英家教网 > 初中数学 > 题目详情
如图,抛物线与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线于点C;
(1)求该抛物线的解析式;
(2)求点A关于直线的对称点的坐标,判定点是否在抛物线上,并说明理由;
(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
(1)抛物线的解析式为.
(2)点A/的坐标为(﹣3,4),点A/在该抛物线上,理由见解析.
(3)存在,当点P运动到时,四边形PACM是平行四边形.理由见解析.

试题分析:(1)把A(5,0)、B(-1,0)两点代入二次函数解析式中,解方程组得到b、c的值,即可求得抛物线的解析式.
(2)过点⊥x轴于E,AA/与OC交于点D,可证得;再由相似三角形对应边成比例,可以求得点A′的坐标.然后把点A的坐标代入抛物线的解析式,验证点A′是否在抛物线上即可.
(3)存在.设直线的解析式为y=kx+b,将点C和点A′的坐标代入直线方程,即可得到直线的解析式为;设点P的坐标为,则点M为,要使四边形PACM是平行四边形,只需PM=AC.又点M在点P的上方,则有 ,解此方程即可得到
点P的坐标.
试题解析:(1)∵与x轴交于A(5,0)、B(-1,0)两点,
,  解得
∴抛物线的解析式为.························································3分
(2)过点⊥x轴于E,AA/与OC交于点D,
∵点C在直线y=2x上,   ∴C(5,10)
∵点A和关于直线y=2x对称,
∴OC⊥=AD.
∵OA=5,AC=10,
.
,  ∴.∴.·············5分
和Rt中,
∵∠+∠=90°,∠ACD+∠=90°,
∴∠=∠ACD.
又∵∠=∠OAC=90°,
.
.
=4,AE=8.
∴OE=AE-OA=3.
∴点A/的坐标为(﹣3,4).·······························7分
当x=﹣3时,.
所以,点A/在该抛物线上.································8分

存在.
理由:设直线的解析式为y=kx+b,
,解得
∴直线的解析式为.··················9分
设点P的坐标为,则点M为.
∵PM∥AC,
∴要使四边形PACM是平行四边形,只需PM=AC.又点M在点P的上方,
.
解得(不合题意,舍去)当x=2时,.
∴当点P运动到时,四边形PACM是平行四边形.····················11分
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,已知点A1,A2,…,A2011在函数位于第二象限的图象上,点B1,B2,…,B2011在函数位于第一象限的图象上,点C1,C2,…,C2011在y轴的正半轴上,若四边形,…,都是正方形,则正方形的边长为
A.2010B.2011C.2010D.2011

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知二次函数经过、C三点,点是抛物线与直线的一个交点.
(1)求二次函数关系式和点C的坐标;
(2)对于动点,求的最大值;
(3)若动点M在直线上方的抛物线运动,过点M做x轴的垂线交x轴于点F,如果直线AP把线段MF分成1:2的两部分,求点M的坐标。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x²+bx+c与直线y=x-1交于A、B两点.点A的横坐标为-3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.
(1)求抛物线的解析式;
(2)当m为何值时,
(3)是否存在点P,使△PAD是直角三角形,若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数(m是常数)
(1)求证:不论m为何值,该函数的图像与x轴没有公共点;
(2)把该函数的图像沿x轴向下平移多少个单位长度后,得到的函数的图像与x轴只有一个公共点?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m),
(1)求二次函数的解析式并写出D点坐标;
(2)点Q是线段AB上的一动点,过点Q作QE∥AD交BD于E,连结DQ,当△DQE的面积最大时,求点Q的坐标;
(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,抛物线与x轴交于点A(-2,0)和点B,与y轴交于点C(0,),线段AC上有一动点P从点A出发,以每秒1个单位长度的速度向点C移动,线段AB上有另一个动点Q从点B出发,以每秒2个单位长度的速度向点A移动,两动点同时出发,设运动时间为t秒.
(1)求该抛物线的解析式;
(2)在整个运动过程中,是否存在某一时刻,使得以A,P,Q为顶点的三角形与△AOC相似?如果存在,请求出对应的t的值;如果不存在,请说明理由.
(3)在y轴上有两点M(0,m)和N(0,m+1),若要使得AM+MN+NP的和最小,请直接写出相应的m、t的值以及AM+MN+NP的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,二次函数y=ax2+bx+c的图象经过(-1,0)、(0,3),下列结论中错误的是(  )
A.abc<0B.9a+3b+c=0C.a-b="-3" D. 4ac﹣b2<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直角坐标系中有一点A(-4,3),点B在x轴上,△AOB是等腰三角形。
(1)求满足条件的所有点B的坐标。(直接写出答案)
(2)求过O、A、B三点且开口向下的抛物线的函数解析式。(只需求出满足条件的即可)。
(3)在(2)中求出的抛物线上存在点p,使得以O、A、B、P四点为顶点的四边形是梯形,求满足条件的所有点P的坐标及相应梯形的面积。

查看答案和解析>>

同步练习册答案