精英家教网 > 初中数学 > 题目详情

如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB边的中点,P是BC边上一动点(点P不与B、C重合),若以D、C、P为顶点的三角形与△ABC相似,则线段PC=________.

4或
分析:由Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB边的中点,即可求得AB与CD的值,又由以D、C、P为顶点的三角形与△ABC相似,可得∠DPC=90°或∠CDP=90°,然后根据相似三角形的对应边成比例,即可求得PC的值.
解答:∵Rt△ABC中,∠ACB=90°,AC=6,BC=8,
∴AB=10,
∵D是AB边的中点,
∴CD=BD=AB=5,
∵以D、C、P为顶点的三角形与△ABC相似,
∴∠DPC=90°或∠CDP=90°,
(1)若∠DPC=90°,则DP∥AC,
=
∴BP=BC=4,
则PC=4;
(2)若∠CDP=90°,则△CDP∽△BCA,


∴PC=
∴PC=4或
点评:此题考查了相似三角形的性质与直角三角形的性质.解题的关键是掌握相似三角形的对应边成比例定理的应用与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案