精英家教网 > 初中数学 > 题目详情

如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,若将AC沿AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.

解:∵△ABC是直角三角形,AC=6cm,BC=8cm,
∴AB===10(cm),
∵△AED是△ACD翻折而成,
∴AE=AC=6cm,∠AED=90°,
设DE=CD=xcm,
∴BE=AB-AE=10-6=4(cm),
在Rt△BDE中,BD2=DE2+BE2
即(8-x)2=42+x2
解得:x=3.
故CD的长为3cm.
分析:先根据勾股定理求出AB的长,设CD=xcm,则BD=(8-x)cm,再由图形翻折变换的性质可知AE=AC=6cm,DE=CD=xcm,进而可得出BE的长,在Rt△BDE中利用勾股定理即可求出x的值,即可得出CD的长.
点评:本题考查了折叠的性质和勾股定理的知识,解答本题的关键是理解折叠前后图形的形状和大小不变,对应边和对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案