如图,点D、E在△ABC的边BC上,AB=AC,AD=AE,且BD=4,求EC的长.
![]()
4
【解析】
试题分析:直观上看BD=CE,证明线段相等的方法一般是全等,包含BD和CE的两个三角形是△ABD和△AEC,找两个三角形全等的条件,因为AB=AC,所以∠B=∠C,又因为AD=AE,所以∠ADE=∠AED,即∠ADB=∠AEC,在△ABD和△AEC中,∠B=∠C,∠ADB=∠AEC,AB=AC,所以△ABD≌△AEC(AAS),所以EC=BD=4.
试题解析:∵AB=AC,
∴∠B=∠C,
又∵AD=AE,
∴∠ADE=∠AED,即∠ADB=∠AEC,
在△ABD和△AEC中, ∠B=∠C, ∠ADB=∠AEC, AB=AC,
∴△ABD≌△AEC(AAS),
∴EC=BD=4.
考点:三角形的全等.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com