精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ABC是等腰三角形,∠C=90°,O是△ABC内一点,点O到△ABC各边的距离等于1,将△ABC绕点O顺时针旋转45°得到△A1B1C1,两三角形的公共部分为多边形KLMNPQ.
①证明:△AKL,△BMN,△CPQ都是等腰直角三角形.
②求证:△ABC与△A1B1C1公共部分的面积.
分析:(1)连接OC、OC1,分别交PQ、NP于点D、E,根据题意证得OC是∠ACB的平分线,然后根据等腰直角三角形的性质可判断出∴△CPQ和△C1NP都是等腰直角三角形,同理可证得△B1ML和△AKL也都是等腰直角三角形.
(2)将所求的面积分割,然后利用△ABC,△CPQ,△BMN,△AKL的面积,从而运用面积相减可得出答案.
解答:精英家教网证明:①连接OC、OC1,分别交PQ、NP于点D、E,根据题意得∠COC1=45°.
∵点O到AC和BC的距离都等于1,
∴OC是∠ACB的平分线.
∵∠ACB=90°∴∠OCE=∠OCQ=45°
同理∠OC1D=∠OC1N=45°
∴∠OEC=∠ODC1=90°
∴∠CQP=∠CPQ=∠C1PN=∠C1NP=45°
∴△CPQ和△C1NP都是等腰直角三角形.
∴∠BNM=∠C1NP=45°∠A1QK=∠CQP=45°,
∵∠B=45°∠A1=45°,
∴△BMN和△A1KQ都是等腰直角三角形.
∴∠B1ML=∠BMN=90°,∠AKL=∠A1KQ=90°
∴∠B1=45°∠A=45°
∴△B1ML和△AKL也都是等腰直角三角形.

②在Rt△ODC1和Rt△OEC中,
∵OD=OE=1,∠COC1=45°
∴OC=OC1=
2

∴CD=C1E=
2
-1
∴PQ=NP=2(
2
-1)=2
2
-2,CQ=CP=C1P=C1N=
2
2
-1)=2-
2

S△CPQ=
1
2
×(2-
2
)2=3-2
2

延长CO交AB于H
∵CO平分∠ACB,且AC=BC
∴CH⊥AB,
∴CH=CO+OH=
2
+1
∴AC=BC=A1C1=B1C1=
2
2
+1)=2+
2

S△ABC=
1
2
×(2+
2
)2=3+2
2

∵A1Q=BN=(2+
2
)-(2
2
-2)-(2-
2
)=2,
∴KQ=MN=
2
2
=
2

S△BMN=
1
2
×(
2
)2=1

∵AK=(2+
2
)-(2-
2
)-
2
=
2

S△AKL=
1
2
×(
2
)2=1

S多边形KLMNPQ=S△ABC-S△CPQ-S△BMN-S△AKL
=(3+2
2
)-(3-2
2
)-1-1
=4
2
-2
点评:本题考查等腰直角三角形及旋转的性质,难度较大,关键是掌握基本知识,然后利用基本的性质解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等腰直角三角形,BC是斜边,点P是△ABC内一定点,延长BP至P′,将△ABP绕点A旋转后,与△ACP′重合,如果AP=
2
,那么PP′=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,△ABC是等腰三角形,AB=AC,D为直线BC上一点,DE⊥AC,DF⊥AB,CH⊥AB,
(1)如图(1)若D为BC的中点,求证:DE+DF=CH.
(2)如图(2)若D为BC延长线上一点,其他条件不变,线段DE.DF.CH 之间有何数量关系,请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是
 
(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等腰直角三角形,D为斜边AB上任意一点(不与A,B重合),连接CD,作EC⊥DC,且EC=DC,连接AE.
(1)求证:∠E+∠ADC=180°.
(2)猜想:当点D在何位置时,四边形AECD是正方形?说明理由.

查看答案和解析>>

同步练习册答案