精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,以AB为直径的⊙O交AC于点D,直径AB左侧的半圆上有一点动点E(不与点A、B重合),连结EB、ED.
(1)如果∠CBD=∠E,求证:BC是⊙O的切线;
(2)当点E运动到什么位置时,△EDB≌△ABD,并给予证明;
(3)若tanE=数学公式,BC=数学公式,求阴影部分的面积.(计算结果精确到0.1)
(参考数值:π≈3.14,数学公式≈1.41,数学公式≈1.73)

解:(1)证明:∵AB为⊙O的直径,∴∠ADB=90°,即∠ABD+∠BAD=90°.
又∵∠CBD=∠E,∠BAD=∠E,∴∠ABD+∠CBD=90°,即∠ADC=90°.
∴BC⊥AB.∴BC是⊙O的切线.

(2)当点E运动到DE经过点O位置时,△EDB≌△ABD.证明如下:
当点E运动到DE经过点O位置时,∠EBD=∠ADB=90°,
在△EDB与△ABD中,

∴△EDB≌△ABD(AAS).

(3)如图,连接OD,过点O作OF⊥AD于点F,
∵∠BAD=∠E,tanE=
∴tan∠BAD=
又∵∠ADB=90°,
∴∠BAD=30°.
∵∠ABC=90°,BC=
∴AB==4.
∴AO=2,OF=1,AF=AOcos∠BAD=
∴AD=2
∵AO=DO,
∴∠AOD=120°.
∴S阴影=S扇形OAD-S△AOD=-×3=2×1=π-≈2.5.
分析:(1)欲证明BC是⊙O的切线,只需证得BC⊥AB;
(2)利用圆周角定理,全等三角形的判定定理AAS证得当点E运动到DE经过点O位置时,△EDB≌△ABD;
(3)如图,连接OD,过点O作OF⊥AD于点F.S阴影=S扇形OAD-S△AOD.由圆周角定理和正切三角函数定义易求AB的长度、圆心角∠AOD=120°.所以根据扇形面积公式和三角形的面积公式进行计算即可.
点评:本题考查了切线的判定、全等三角形的判定以及扇形面积的计算.求(3)题中阴影部分的面积时,采用了“分割法”.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案