精英家教网 > 初中数学 > 题目详情
(2010•营口模拟)如图,在矩形ABCD中,AB=1,BC=3,点E为BC边上的动点(点E与点B、C不重合),设BE=x.
操作:在射线BC上取一点F,使得EF=BE,以点F为直角顶点、EF为边作等腰直角三角形EFG,设△EFG与矩形ABCD重叠部分的面积为S.
(1)求S与x的函数关系式,并写出自变量x的取值范围.
(2)S是否有最大值?若存在,请直接写出最大值,若不存在,请说明理由.

【答案】分析:(1)本题要分情况进行讨论:
①当EF≤CD,即当0<x≤1时,重合部分是△EFG,两直角边的长均为x,由此可得出S,x的函数关系式.
②当CD<EF≤BC,即当1<x≤1.5时,重合部分是个梯形,可用相似三角形求出梯形的上底的长,进而根据梯形的面积计算公式得出S,x的函数关系式.
③当EF>BC,但D在EG上或EG右侧,即当1.5<x≤2时,此时重合部分是个梯形,如果设EG与AD相交于点M,AD的延长线与FG相交于点N,可先在相似三角形GMN和GEF中求出MN的长,而后根据MD=MN-DN求出梯形的上底长,进而可按梯形的面积计算公式得出S,x的函数关系式.
④当EF在D点右侧时,即当2<x<3时,重合部分是个三角形,先用x表示出两直角边的长,然后按①的方法进行求解即可.
(2)按上面分析的四种情况,分别进行求解,得出不同自变量的取值范围内S的最大值,然后进行比较即可得出S的最大值.
解答:解:(1)①当0<x≤1时,FG=EF=x<1=AB(如图1),
∴S=EF•FG=x2(0<x≤1);
②当1<x≤1.5时,FG=EF=x>1=AB(如图2),
设EG与AD相交于点M,FG与AD相交于点N,
∵四边形ABCD是矩形
∴AD∥BC
∴∠GNM=∠GEF=45°,∠GNM=∠GFE=90°
∴∠MGN=45°
∴MN=GN=x-1
S=(MN+EF)FN=x-(1<x≤1.5);
③当1.5<x≤2时,(如图3),设EG与AD相交于点M,AD的延长线与FG相交于点N,
∵四边形ABCD是矩形
∴AN∥BF
同理MN=GN=x-1
∵∠FNM=∠GFE=∠DCF=90°
∴四边形DCFN是矩形
DN=CF=BF-BC=2x-3,
MD=MN-DN=(x-1)-(2x-3)=2-x
S=(MD+EC)CD=-x+(1.5<x≤2)
④当2<x<3时,(如图4),
设EG与CD相交于点M
∵四边形ABCD是矩形,△EFG是等腰直角三角形,
∴∠MCE=90°,∠MEC=45°=∠CME
∴CM=CE=3-x
∴S=CE•CM=x2-3x+(2<x<3);

(2)存在,其最大值为1.
点评:本题主要考查了矩形的性质、等腰直角三角形的性质、相似三角形、一次函数与二次函数的综合应用等知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源:2009年辽宁省大连市中考数学二模试卷(解析版) 题型:解答题

(2010•营口模拟)如图,双曲线与直线y=ax+b相交于点A(1,5),B(m,-2).
(1)求曲线的解析式和m的值;
(2)求不等式的解集(直接写出答案).

查看答案和解析>>

科目:初中数学 来源:2010年江西省师大附中(南昌市三校)九年级(下)第二次联考数学试卷(解析版) 题型:解答题

(2010•营口模拟)如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.

查看答案和解析>>

科目:初中数学 来源:2009年山东省日照市中考数学模拟试卷4(郑世业)(解析版) 题型:选择题

(2010•营口模拟)如图,箭头ABCD在网格中做平行移动,当点A移到点P位置时,点C移到的位置为点( )

A.Q
B.S
C.R
D.T

查看答案和解析>>

科目:初中数学 来源:2009年辽宁省大连市中考数学二模试卷(解析版) 题型:填空题

(2010•营口模拟)半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为    cm.

查看答案和解析>>

同步练习册答案