精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,直线AB与x轴交于点A(8,0),与y轴交于点B(0,6).动点P自原点O向A点运动,速度为1个单位/秒;动点Q自原点O沿折线O-B-A运动,速度为2个单位/秒;P、Q两点同时运动,设运动时间为t秒,P点到达A点时终止运动.
(1)当Q点在线段BA上运动时,请直接用t表示Q点的坐标.
(2)当t>3时,求tan∠QPO的值.
(3)在整个运动过程中是否存在这样的t值,使得△OQP是直角三角形?如果存在,请求出t的取值范围或相应的t值;如果不存在,请说明理由.
(4)当t为何值时,△OPQ是以OQ为腰的等腰三角形?请直接写出此时的t值.
分析:(1)如图1,设Q(a,b),利用直角三角函数的定义来求点Q的坐标.
(2)如图1,当t>3时,点Q在线段AB上.在Rt△PQD中,利用∠QDO的正切函数的定义来解答即可;
(3)需要分类讨论:①当点Q在OB边上运动时,△OQP总是直角三角形;②当点Q在边BA上运动时,如图1,只有∠OQP=90°,然后利用(2)中的正切函数值来求t的取值;
(4)需要分类讨论:①当OQ=OP时,以求得t值;②当OQ=OP时,如图3,来求t的值.
解答:解:(1)如图1,点Q在线段AB上,设Q(a,b).过点Q作QC⊥OB于点C,过点Q作QD⊥OA于点D.
∵点A(8,0),点B(0,6).
∴OB=6,OA=8.
∴在Rt△AOB中,根据勾股定理求得AB=10.
∵CQ∥OA,
∴∠1=∠2,
∴cos∠1=cos∠2,即
OA
AB
=
CQ
BQ

8
10
=
a
2t-6

解得,a=
8t-24
5

又∵sin∠2=
OB
AB
=
b
10-(2t-6)
,即
6
10
=
b
16-2t

解得b=
48-6t
5

∴Q点坐标为(
8t-24
5
48-6t
5
);

(2)如图1,当t>3时,点Q在线段AB上.
由(1)知,OD=a=
8t-24
5

∴PD=OP-OD=t-a=
24-3t
5

又由(1)知,QD=b=
48-6t
5

∴tan∠QPO=
QD
PD
=
48-6t
5
24-3t
5
=2,即tan∠QPO=2;

(3)当点Q在OB边上运动时,△OQP总是直角三角形,此时0<t≤3;
当点Q在边BA上运动时,如图1,只有∠OQP=90°,过Q点作QH⊥OA,垂足为H,
则tan∠QPO=tan∠OQH=
OH
QH
=2,
8t-24
5
48-6t
5
=2,
解得t=6.
∴当0<t≤3或t=6时,△OQP是直角三角形;

(4)当OQ=PQ时,易求t=
48
11

当OQ=OP时,如图3,过O点作OM⊥PQ,垂足为M;过Q点作QH⊥OP,垂足为H.
设HP=x,则QH=2x,QP=
5
x,QM=PM=
5
2
x
,OM=
5
x,OP=
5
2
x
,OH=
3
2
x

∴OH:OP=3:5,
8t-24
5
:t=3:5解得t=4.8.
当t=
48
11
或4.8时,△OPQ是以OQ为腰的等腰三角形.
点评:本题考查了一次函数综合题.注意“数形结合”与“分类讨论”的数学思想在本题解答过程中的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案