£¨2012•ºù«µºÒ»Ä££©Èçͼ£¬Å×ÎïÏßy=ax2+bx+
152
(a¡Ù0)
¾­¹ýA£¨-3£¬0£©£¬C£¨5£¬0£©Á½µã£¬µãBΪÅ×ÎïÏ߶¥µã£¬Å×ÎïÏߵĶԳÆÖáÓëxÖá½»ÓÚµãD£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¶¯µãP´ÓµãB³ö·¢£¬ÑØÏ߶ÎBDÏòÖÕµãD×÷ÔÈËÙÔ˶¯£¬ËÙ¶ÈΪÿÃë1¸öµ¥Î»³¤¶È£¬Ô˶¯Ê±¼äΪt£¬¹ýµãP×÷PM¡ÍBD£¬½»BCÓÚµãM£¬ÒÔPMΪÕý·½ÐεÄÒ»±ß£¬ÏòÉÏ×÷Õý·½ÐÎPMNQ£¬±ßQN½»BCÓÚµãR£¬ÑÓ³¤NM½»ACÓÚµãE£®
¢Ùµ±tΪºÎֵʱ£¬µãNÂäÔÚÅ×ÎïÏßÉÏ£»
¢ÚÔÚµãPÔ˶¯¹ý³ÌÖУ¬ÊÇ·ñ´æÔÚijһʱ¿Ì£¬Ê¹µÃËıßÐÎECRQΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬Çó³ö´Ëʱ¿ÌµÄtÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©°ÑµãA¡¢C×ø±ê´úÈëÅ×ÎïÏß½âÎöʽµÃµ½¹ØÓÚa¡¢bµÄ¶þÔªÒ»´Î·½³Ì×飬½â·½³Ì×éÇó³öa¡¢bµÄÖµ£¬¼´¿ÉµÃ½â£»
£¨2£©¸ù¾ÝÅ×ÎïÏß½âÎöʽÇó³ö¶¥µãBµÄ×ø±ê£¬È»ºó¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÓÃt±íʾ³öPM£¬ÔÙÇó³öNEµÄ³¤¶È£¬¢Ù±íʾ³öµãNµÄ×ø±ê£¬ÔÙ¸ù¾ÝµãNÔÚÅ×ÎïÏßÉÏ£¬°ÑµãNµÄ×ø±ê´úÈëÅ×ÎïÏߣ¬½â·½³Ì¼´¿ÉµÃ½â£»¢Ú¸ù¾ÝPMµÄ³¤¶È±íʾ³öQD£¬ÔÙÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßBCµÄ½âÎöʽ£¬È»ºó¸ù¾ÝÖ±ÏßBCµÄ½âÎöʽÇó³öµãRµÄºá×ø±ê£¬´Ó¶øÇó³öQRµÄ³¤¶È£¬ÔÙ±íʾ³öECµÄ³¤¶È£¬È»ºó¸ù¾ÝƽÐÐËıßÐζԱßƽÐÐÇÒÏàµÈÁÐʽÇó½â¼´¿É£®
½â´ð£º½â£º£¨1£©¡ßy=ax2+bx+
15
2
¾­¹ýA£¨-3£¬0£©£¬C£¨5£¬0£©Á½µã£¬
¡à
9a-3b+
15
2
=0
25a+5b+
15
2
=0
£¬
½âµÃ
a=-
1
2
b=1
£¬
ËùÒÔ£¬Å×ÎïÏߵĽâÎöʽΪy=-
1
2
x2+x+
15
2
£»

£¨2£©¡ßy=-
1
2
x2+x+
15
2
£¬
=-
1
2
£¨x2-2x+1£©+
1
2
+
15
2
£¬
=-
1
2
£¨x-1£©2+8£¬
¡àµãBµÄ×ø±êΪ£¨1£¬8£©£¬
¡ßÅ×ÎïÏߵĶԳÆÖáÓëxÖá½»ÓÚµãD£¬
¡àBD=8£¬CD=5-1=4£¬
¡ßPM¡ÍBD£¬
¡àPM¡ÎCD£¬
¡à¡÷BPM¡×¡÷BDC£¬
¡à
BP
BD
=
PM
CD
£¬
¼´
t
8
=
PM
4
£¬
½âµÃPM=
1
2
t£¬
ËùÒÔ£¬OE=1+
1
2
t£¬
¡ßËıßÐÎPMNQΪÕý·½ÐΣ¬
¡àNE=8-t+
1
2
t=8-
1
2
t£¬
¢ÙµãNµÄ×ø±êΪ£¨1+
1
2
t£¬8-
1
2
t£©£¬
ÈôµãNÔÚÅ×ÎïÏßÉÏ£¬Ôò-
1
2
£¨1+
1
2
t-1£©2+8=8-
1
2
t£¬
ÕûÀíµÃ£¬t£¨t-4£©=0£¬
½âµÃt1=0£¨ÉáÈ¥£©£¬t2=4£¬
ËùÒÔ£¬µ±t=4Ãëʱ£¬µãNÂäÔÚÅ×ÎïÏßÉÏ£»

¢Ú´æÔÚ£®
ÀíÓÉÈçÏ£º¡ßPM=
1
2
t£¬ËıßÐÎPMNQΪÕý·½ÐΣ¬
¡àQD=NE=8-
1
2
t£¬
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+m£¬
Ôò
k+m=8
5k+m=0
£¬
½âµÃ
k=-2
m=10
£¬
ËùÒÔÖ±ÏßBCµÄ½âÎöʽΪy=-2x+10£¬
Ôò-2x+10=8-
1
2
t£¬
½âµÃx=
1
4
t+1£¬
ËùÒÔ£¬QR=
1
4
t+1-1=
1
4
t£¬
ÓÖEC=CD-DE=4-
1
2
t£¬
¸ù¾ÝƽÐÐËıßÐεĶԱßƽÐÐÇÒÏàµÈ¿ÉµÃQR=EC£¬
¼´
1
4
t=4-
1
2
t£¬
½âµÃt=
16
3
£¬
´ËʱµãPÔÚBDÉÏ£¬ËùÒÔ£¬µ±t=
16
3
ʱ£¬ËıßÐÎECRQΪƽÐÐËıßÐΣ®
µãÆÀ£º±¾ÌâÊǶþ´Îº¯ÊýµÄ×ÛºÏÌâÐÍ£¬Ö÷ÒªÉæ¼°´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¨°üÀ¨¶þ´Îº¯Êý½âÎöʽ£¬Ò»´Îº¯Êý½âÎöʽ£©£¬ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬Æ½ÐÐËıßÐεĶԱßƽÐÐÇÒÏàµÈµÄÐÔÖÊ£¬×ÛºÏÐÔ½ÏÇ¿£¬µ«ÄѶȲ»´ó£¬×Ðϸ·ÖÎö±ã²»ÄÑÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ºù«µºÒ»Ä££©¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÈçͼËùʾ£¬ÄÇô¹ØÓڴ˶þ´Îº¯ÊýµÄÏÂÁÐËĸö½áÂÛ£º¢Ùa+b+c£¼0£»¢Úc£¾1£»¢Ûb2-4ac£¾0£»¢Ü2a-b£¼0£¬ÆäÖÐÕýÈ·µÄ½áÂÛÓУ¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ºù«µºÒ»Ä££©£¨1£©¼ÆË㣺(
1
2
)-1-3tan30¡ã+(1-¦Ð)0+
12
£®
£¨2£©½â·Öʽ·½³Ì£º
2
x+1
=
x
x-1
-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ºù«µºÒ»Ä££©Ä³Ð£ÊµÊ©¡°Ã¿ÌìһСʱУ԰ÌåÓý»î¶¯¡±£¬Ä³°àͬѧÀûÓÿμä»î¶¯Ê±¼ä»ý¼«²Î¼ÓÌåÓý¶ÍÁ¶£¬Ã¿Î»Í¬Ñ§´Ó³¤ÅÜ¡¢ÀºÇò¡¢Ç¦Çò¡¢Á¢¶¨ÌøÔ¶ÖÐÑ¡Ò»Ïî½øÐÐѵÁ·£¬ÑµÁ·Ç°ºó¶¼½øÐÐÁ˲âÊÔ£®ÏÖ½«ÏîÄ¿Ñ¡ÔñÇé¿ö¼°ÑµÁ·ºóÀºÇò¶¨Ê±¶¨µãͶÀº²âÊԳɼ¨ÕûÀíºó×÷³öÈçÏÂͳ¼Æͼ±í£®

ѵÁ·ºóÀºÇò¶¨Ê±¶¨µãͶÀº²âÊÔ½øÇòÊýͳ¼Æ±í£º
½øÇòÊý£¨¸ö£© 3 4 5 6 7 8
ÈËÊý 2 8 7 4 1 2
ÇëÄã¸ù¾Ýͼ±íÖеÄÐÅÏ¢»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©Çë°ÑÑ¡ÔñÁ¢¶¨ÌøԶѵÁ·µÄÈËÊýռȫ°àÈËÊýµÄ°Ù·Ö±ÈÌîдÔÚÏîÄ¿Ñ¡ÔñÇé¿öͳ¼ÆͼÏàӦλÖÃÉÏ£¬¸Ã°à¹²ÓÐͬѧ
40
40
ÈË£»
£¨2£©²¹È«¡°ÑµÁ·Ç°ÀºÇò¶¨Ê±¶¨µãͶÀº²âÊÔ½øÇòÊýͳ¼Æͼ¡±£»
£¨3£©ÑµÁ·ºóÀºÇò¶¨Ê±¶¨µãͶÀºÈ˾ù½øÇòÊý
5
5
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ºù«µºÒ»Ä££©Èçͼ£¬ÒÑÖªABÊÇ°ëÔ²OµÄÖ±¾¶£¬AB=10£¬µãPÊÇ°ëÔ²ÖÜÉÏÒ»µã£¬Á¬½ÓAP¡¢BP£¬²¢ÑÓ³¤BPÖÁµãC£¬Ê¹CP=BP£¬¹ýµãC×÷CE¡ÍAB£¬µãEΪ´¹×㣬CE½»APÓÚµãF£¬Á¬½ÓOF£®
£¨1£©µ±¡ÏBAP=30¡ãʱ£¬Çó
BP
µÄ³¤¶È£»
£¨2£©µ±CE=8ʱ£¬ÇóÏ߶ÎEFµÄ³¤£»
£¨3£©ÔÚµãPÔ˶¯¹ý³ÌÖУ¬µãEËæÖ®Ô˶¯µ½µãA¡¢OÖ®¼äʱ£¬ÒÔµãE¡¢O¡¢FΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷BAPÏàËÆ£¬ÇëÇó³ö´ËʱAEµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸