精英家教网 > 初中数学 > 题目详情
(1996•山东)半径为R的圆内接正n边形的周长是
nR2sin
180°
n
•cos
180°
n
nR2sin
180°
n
•cos
180°
n
分析:用R、n表示出圆的内接正n边形的边长及边心距,再由三角形的面积公式求解即可.
解答:解:半径为R的圆的内接正n边形的边长为2Rsin
180°
n

边心距为Rcos
180°
n

则正n边形的面积为=n•
1
2
•2Rsin
180°
n
•Rcos
180°
n
=nR2sin
180°
n
•cos
180°
n

故答案为:nR2sin
180°
n
•cos
180°
n
点评:本题考查的是正多边形和圆,根据题意用R、n表示出圆的内接正n边形的边长及边心距是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1996•山东)如图,在△ABC中,BC=6,AC=4
2
,∠C=45°,在BC边上有一动点P,过P作PD∥AB,与AC相交于点D,连接AP,设BP=x,△APD的面积为y.
(1)求y与x之间的函数关系式,并指出自变量x的取值范围.
(2)是否存在这样的P点,使得△APD的面积等于△ABP面积的
2
3
?若存在,求出BP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1996•山东)如果两圆的半径为R,r,外公切线长为R+r,那么这两个圆(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1996•山东)AB为⊙O直径,BC为切线,CO平行于弦AD,OA=r.
①求证:DC为⊙O切线;
②求AD•OC;
③若AD+OC=
92
r,求CD长.

查看答案和解析>>

科目:初中数学 来源: 题型:013

(2004 山东青岛)半径为3和5的两圆相外切,则其圆心距为

[  ]

A.2
B.4
C.8
D.16

查看答案和解析>>

同步练习册答案