【题目】如图,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于第二、四象限内的A,B两点,与轴交于C点,过点A作AH⊥轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(,﹣2).
(1)求该反比例函数和一次函数的解析式;
(2)求△AOB的面积.
【答案】(1)反比例函数解析式为y=-.一次函数的解析式为y=-x+1.(2).
【解析】
(1)由OH和tan∠AOH的值即可求出点A的坐标,利用反比例函数图象上点的坐标特征即可求出k值和点B的坐标,再根据点A、B的坐标利用待定系数法即可求出直线AB的解析式; (2)将x=0代入直线AB的解析式中求出y值,由此即可得出OC的长度,再根据三角形的面积公式即可求出△AOC的面积.
(1)∵OH=3,tan∠AOH=,
∴AH=OHtan∠AOH=2,
∴点A的坐标为(-2,3).
∵点A在反比例函数y=(k≠0)的图象上,
∴k=-2×3=-6,
∴反比例函数解析式为y=-.
∵点B(m,-2)在反比例函数y=-的图象上,
∴m=3,
∴点B的坐标为(3,-2).
将A(-2,3)、B(3,-2)代入y=ax+b,
,解得: ,
∴一次函数的解析式为y=-x+1.
(2)当x=0时,y=-x+1=1,
∴点C的坐标为(0,1),
∴OC=1,
∴S△AOB=S△AOC+S△BOC=×1×2+×1×3=.
科目:初中数学 来源: 题型:
【题目】把弹簧的上端固定,在其下端挂物体,下表是测得的弹簧长度与所挂物体的质量的一组对应值:
0 | 1 | 2 | 3 | 4 | 5 | … | |
15 | 15.5 | 16 | 16.5 | 17 | 17.5 | … |
(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)弹簧的原长是_______,物体每增加,弹簧的长度增加_________.
(3)请你估测一下当所挂物体为时,弹簧的长度是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:
根据图中提供的信息,解答下列问题:
(1)补全频数分布直方图
(2)求扇形统计图中m的值和E组对应的圆心角度数
(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.
(1)求∠CBE的度数;
(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与轴相交于A、B两点,与轴相交于点C,OA=1,OC=3,连接BC.
(1)求b的值;
(2)点D是直线BC上方抛物线一动点(点B、C除外),当△BCD的面积取得最大值时,在轴上是否存在一点P,使得|PB﹣PD|最大,若存在,请求出点P的坐标;若不存在,请说明理由.
(3)在(2)的条件下,若在平面上存在点Q,使得以点B、C、D、Q为顶点的四边形为平行四边形,请直接写出点Q坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用一条长为18cm的细绳围成一个等腰三角形.
(1)如果腰长是底边长的2倍,求三角形各边的长;
(2)能围成有一边的长是4cm的等腰三角形吗?若能,求出其他两边的长;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点为平面内一点,于.
(1)如图1,直接写出和之间的数量关系 ;
(2)如图2,过点作于点,求证:;
(3)如图3,在(2)问的条件下,点、在上,连接、、,平分,平分,若,,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.
(1)求证:AD=BC;
(2)求证:△AGD∽△EGF;
(3)如图2,若AD、BC所在直线互相垂直,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com