精英家教网 > 初中数学 > 题目详情
11.定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2-bx+a=0的根的情况(  )
A.有两个相等的实数根B.有两个不相等的实数根
C.无实数根D.有一根为0

分析 先利用新定义得到22•a+a<0,解得a<0,再计算判别式,利用a的范围可判断△>0,从而可判断方程根的情况.

解答 解:∵2☆a的值小于0,
∴22•a+a<0,解得a<0,
∴△=b2-4×2×a>0,
∴方程有两个不相等的两个实数根.
故选B.

点评 本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.方程x2-$\frac{10}{x}$+1=-4x的正数根的取值范围是(  )
A.0<x<1B.1<x<2C.2<x<3D.3<x<4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图所示,为了测量出A、B两点间的距离,在地面上找到一点C,连接AC、BC,使得∠ACB=90°,然后在BC的延长线上确定点D,使得CD=CB.现已知AD的长是一元一次方程$\frac{x-7}{2}$+$\frac{x+4}{7}$=26的解,则A、B两点间的距离为(  )
A.30米B.35米C.40米D.45米

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.有下列四个结论:
①a÷m+a÷n=a÷(m+n);
②某商品单价为a元.甲商店连续降价两次,每次都降10%.乙商店直接降20%.顾客选择甲或乙商店购买同样数量的此商品时,获得的优惠是相同的;
③若x2+y2+2x-4y+5=0,则yx的值为$\frac{1}{2}$;
④关于x分式方程$\frac{2x-a}{x-1}$=1的解为正数,则a>1.
请在正确结论的题号后的空格里填“√”,在错误结论的题号后横线里填“×”:
①×;  ②×;  ③√;  ④×.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.若抛物线L:y=ax2+bx+c(a,b,c是常数,a≠0)与直线l:y=ax+b满足a2+b2=2a(2c-b),则称此直线l与该抛物线L具有“支干”关系.此时,直线l叫做抛物线L的“支线”,抛物线L叫做直线l的“干线”.
(1)若直线y=x-2与抛物线y=ax2+bx+c具有“支干”关系,求“干线”的最小值;
(2)若抛物线y=x2+bx+c的“支线”与y=-$\frac{4c}{x}$的图象只有一个交点,求反比例函数的解析式;
(3)已知“干线”y=ax2+bx+c与它的“支线”交于点P,与它的“支线”的平行线l′:y=ax+4a+b交于点A,B,记△ABP得面积为S,试问:$\frac{S}{|a|}$的值是否为定值?若是,请求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在学习三角形中位线的性质时,小亮对课本给出的解决办法进行了认真思考:
请你利用小亮的发现解决下列问题:
(1)如图1,AD是△ABC的中线,BE交AC于E,交AD于E,且AE=EF,求证:AC=BF.
请你帮助小亮写出辅助线作法并完成论证过程:

(2)解决问题:如图2,在△ABC中,∠B=45°,AB=10,BC=8,DE是△ABC的中位线,过点D、E作DF∥EG,分别交BC于F、G,过点A作MN∥BC,分别与FE、GE的延长线交于M、N,则四边形MFGN周长的最小值是10$\sqrt{2}$+8.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.计算(-$\frac{1}{2}$)-1+(2$\sqrt{3}$-1)0-|tan45°-2$\sqrt{3}$|=-2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.-|-2017|的相反数是(  )
A.2017B.$\frac{1}{2017}$C.-2017D.-$\frac{1}{2017}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.在?ABCD中,E为AD的中点,则△DEF与△BCF的面积比为(  )
A.1:2B.1:3C.1:4D.1:$\sqrt{2}$

查看答案和解析>>

同步练习册答案