精英家教网 > 初中数学 > 题目详情
18.下列图形中,既是轴对称图形,又是中心对称图形的是(  )
A.B.C.D.

分析 根据轴对称图形与中心对称图形的概念求解.

解答 解:A、是轴对称图形,不是中心对称图形,故A错误;
B、既不是轴对称图形也不是中心对称图形,故B错误;
C、既是轴对称图形,又是中心对称图形,故C正确;
D、是中心对图形,不是轴对称图形,故D错误;
故选:C.

点评 本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.
(1)求证:△ADF≌△ABE;
(2)若BE=1,求tan∠AED的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若存在过点P的直线l交⊙C于异于点P的A,B两点,在P,A,B三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P为⊙C 的相邻点,直线l为⊙C关于点P的相邻线.
(1)当⊙O的半径为1时,
①分别判断在点D($\frac{1}{2}$,$\frac{1}{4}$),E(0,-$\sqrt{3}$),F(4,0)中,是⊙O的相邻点有D或E;
②请从①中的答案中,任选一个相邻点,在图1中做出⊙O关于它的一条相邻线,并说明你的作图过程;
③点P在直线y=-x+3上,若点P为⊙O的相邻点,求点P横坐标的取值范围;
(2)⊙C的圆心在x轴上,半径为1,直线y=-$\frac{\sqrt{3}}{3}x+2\sqrt{3}$与x轴,y轴分别交于点M,N,若线段MN上存在⊙C的相邻点P,直接写出圆心C的横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,点D为BA延长线上的一点,且∠B=45°,∠D=∠ACB=60°,AB=3$\sqrt{2}$,
(1)试求BC的长;
(2)尺规作图:作出△ADC的外接圆⊙O(不写作法,保留作图痕迹),并求出⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,点A(2,0),以OA为半径在第一象限内作圆弧AB,使∠AOB=60°,点C为弧AB的中点,D为半径OA上一动点(不与点O,A重合),点A关于直线CD的对称点为E,若点E落在半径OA上,则点E的坐标为($2\sqrt{3}-2,0$);若点E落在半径OB上,则点E的坐标为($\sqrt{3}-1$,$3-\sqrt{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,AC、BD为圆O的两条互相垂直的直径,动点P从圆心O出发,沿O→C→D→O的路线在半径OC,劣弧$\widehat{CD}$,半径DO上作匀速运动,设运动时间为t秒,∠APB的度数为y度,那么表示y与t之间函数关系的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.某校参加校园青春健身操比赛的16名运动员的身高如表:
 身高(cm) 172 173 175176 
 人数(个) 44
则该校16名运动员身高的平均数和中位数分别是(单位:cm)(  )
A.173cm,173cmB.174cm,174cmC.173cm,174cmD.174cm,175cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,某电信部门计划修建一条连接B、C两地的电缆,测量人员在山脚A点测得B、C两地的仰角分别为30°、45°,在B地测得C地的仰角为60°.已知C地比A地高200米,电缆BC至少长多少米?($\sqrt{3}$≈1.732,$\sqrt{2}$≈1.414,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,抛物线F:y=ax2+bx+c(a>0)与y轴相交于点C,直线L1经过点C且平行于x轴,将L1向上平移t(t>0)个单位得到直线L2.设L1与抛物线F的交点为C、D,L2与抛物线F的交点为A、B,连结AC、BC.
(1)当a=$\frac{1}{2}$,b=-$\frac{3}{2}$,c=1,t=2时,判断△ABC的形状,并说明理由;
(2)若△ABC为直角三角形,求t的值;(用含a的式子表示)
(3)在(2)的条件下,若点A关于y轴的对称点A′恰好在抛物线F的对称轴上,连结A′C,BD,若四边形A′CDB的面积为2$\sqrt{3}$,求a的值.

查看答案和解析>>

同步练习册答案