精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,AB=AC,以AB边的中点O为圆心,线段OA的长为半径作圆,分别交BC、AC边于点D、E,DF⊥AC于点F,延长FD交AB延长线于点G.
(1)求证:FD是⊙O的切线.
(2)若BC=AD=4,求tan∠GDB的值.

(1)证明:连接OD,
∵AB=AC,
∴∠C=∠ABC,
∵OB=OD,
∴∠ODB=∠ABC,
∴∠C=∠ODB,
∴OD∥AC,
∵DF⊥AC,
∴DF⊥OD于点D,
∴FD是⊙O的切线;

(2)解:∵AB为⊙O的直径,
∴AD⊥BC,
∵AB=AC,BC=AD=4,
∴CD=BD=2,

∵DF⊥OD,AD⊥BC,
∴∠CAD+∠C=∠CDF+∠C=90°,
∴∠CDF=∠CAD,
∵∠GDB=∠CDF=∠CAD,

分析:(1)连接OD,要证明FD是⊙O的切线,即转化为证明DF⊥OD即可;
(2)利用圆周角定理和锐角三角函数以及已知条件证明∠GDB=∠CDF=∠CAD,即可求出tan∠GDB的值.
点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案