精英家教网 > 初中数学 > 题目详情
已知:D是AC上一点,BC=AE,DE∥AB,∠B=∠DAE.求证:AB=DA.
证明见解析.

试题分析:由平行线的性质,可得内错角相等,根据AAS,可得两三角形全等,从而根据全等三角形对应边相等的性质,可得证明结果.
试题解析:∵DE∥AB,
∴∠EDA=∠CAB.
在△DAE和△ACB中,∵∠EDA=∠CAB,∠DAE=∠B,AE=BC,
∴△DAE≌ACB(AAS),
∴AB=DA.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?  (填“是”或“不是”).
(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为  
应用提升
(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,△MNQ中,MQ≠NQ.
(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;

(2)参考(1)中构造全等三角形的方法解决下面问题:
如图,在四边形ABCD中,,∠B=∠.求证:CD=AB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠CEF=75°,CF=,求△AEF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△FCE的面积为S2,若SABC=6,则S1-S2的值为____________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在△DBC中,BC=DC,过点C作CE⊥DC交DB的延长线于点E,过点C作AC⊥BC且AC=EC,连结AB.
求证:AB=ED.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为    

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在矩形ABCD中,已知AB=2cm,BC=3cm,现有一根长为2 cm的木棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P在运动过程中所围成的图形的面积为( )
A.6 cm2B.3 cm2C.(2+π)cm2D.(6-π)cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为    (   )
A.5      B.6      C.7      D.8

查看答案和解析>>

同步练习册答案