精英家教网 > 初中数学 > 题目详情
如图,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O为原点,OC、OA所在直线为轴建立坐标系.抛物线顶点为A,且经过点C.点P在线段AO上由A向点O运动,点O在线段OC上由C向点O运动,QD⊥OC交BC于点D,OD所在直线与抛物线在第一象限交于点E.

(1)求抛物线的解析式;
(2)点E′是E关于y轴的对称点,点Q运动到何处时,四边形OEAE′是菱形?
(3)点P、Q分别以每秒2个单位和3个单位的速度同时出发,运动的时间为t秒,当t为何值时,PB∥OD?
解:(1)∵A(0,2)为抛物线的顶点,∴设y=ax2+2。
∵点C(3,0),在抛物线上,∴9a+2=0,解得:
∴抛物线的解析式为;
(2)若要四边形OEAE′是菱形,则只要AO与EE′互相垂直平分,
∴EE′经过AO的中点,∴点E纵坐标为1,代入抛物线解析式得:
解得:
∵点E在第一象限,∴点E为(,1)。
设直线BC的解析式为y=kx+b,
把B(1,2),C(3,0),代入得:,解得
∴BC的解析式为:
设直线EO的解析式为y=ax,将E点代入,可得出EO的解析式为:
,得:
∴直线EO和直线BC的交点坐标为:()。
∴Q点坐标为:(,0)。
∴当Q点坐标为(,0)时,四边形OEAE′是菱形。
(3)设t为m秒时,PB∥DO,又QD∥y轴,则有∠APB=∠AOE=∠ODQ,
又∵∠BAP=∠DQO,则有△APB∽△QDO。

由题意得:AB=1,AP=2m,QO=3﹣3m,
又∵点D在直线y=﹣x+3上,∴DQ=3m。
,解得:
经检验:是原分式方程的解。
∴当t=秒时,PB∥OD。
(1)根据顶点式将A,C代入解析式求出a的值,进而得出二次函数解析式。
(2)利用菱形的判定得出AO与EE′互相垂直平分,利用E点纵坐标得出x的值,进而得出BC,EO直线解析式,再利用两直线交点坐标求法得出Q点坐标,即可得出答案。
(3)首先得出△APB∽△QDO,进而得出,求出m的值,进而得出答案。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

若抛物线与y轴的交点为(0,﹣3),则下列说法不正确的是【   】
A.抛物线开口向上
B.抛物线的对称轴是x=1
C.当x=1时,y的最大值为﹣4
D.抛物线与x轴的交点为(-1,0),(3,0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线C1:y=x2。如图(1),平移抛物线C1得到抛物线C2,C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1、C2于点B、D。

(1)求抛物线C2的解析式;
(2)探究四边形ODAB的形状并证明你的结论;
(3)如图(2),将抛物线C2向下平移m个单位(m>0)得抛物线C3,C3的顶点为G,与y轴交于M。点N是M关于x轴的对称点,点P()在直线MG上。问:当m为何值时,在抛物线C3上存在点Q,使得以M、N、P、Q为顶点的四边形为平行四边形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线的图象过C点.

(1)求抛物线的解析式;
(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?
(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6),将△BCD沿BD折叠(D点在OC边上),使C点落在DA边的E点上,并将△BAE沿BE折叠,恰好使点A落在BD边的F点上.

(1)求BC的长,并求折痕BD所在直线的函数解析式;
(2)过点F作FG⊥x轴,垂足为G,FG的中点为H,若抛物线经过B,H, D三点,求抛物线解析式;
(3)点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B, D点),过点P作PN⊥BC,分别交BC 和 BD于点N, M,是否存在这样的点P,使如果存在,求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.

(1)点C的坐标是     ,线段AD的长等于     
(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点G,M,求抛物线的解析式;
(3)如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长l;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年四川眉山11分)如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y轴上,且OB=OC=3,OA=OD=1,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,直线AD与抛物线交于另一点M.

(1)求这条抛物线的解析式;
(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
(3)请直接写出将该抛物线沿射线AD方向平移个单位后得到的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象.
(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为   ,其中自变量x的取值范围是   
(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?
(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数、二次函数和反比例函数在同一直角坐标系中图象如图,A点为(-2,0)。则下列结论中,正确的是【   】
A.B.C.D.

查看答案和解析>>

同步练习册答案