精英家教网 > 初中数学 > 题目详情
如图,直线y=2x+2与x轴,y轴分别交于A、B两点,点C是在第一象限内此直线上的一个动点,以BC为直角边作如图所示的等腰直角三角形BCD,点E在过A、C、D三点的圆上,且DE⊥BD,连结CE、AD.
(1)找出图中一对相似三角形(不再标记字母),并说明理由;
(2)在C的运动过程中,DE的长度是否改变?若不变,请求出DE的长;若变化,请说明理由.
分析:(1)根据圆周角定理,同弧所对的圆周角相等,即可的到BAD=∠DEC,根据三角形外角的性质得出∠ABD=∠EDC,从而得到△ABD∽△EDC;
(2)根据相似三角形的对应边的比相等即可求解.
解答:解:(1)连接AC.
∵∠BAD与∠DEC是同弧所对的圆周角,
∴∠BAD=∠DEC,
∵△BCD是等腰直角三角形,
∴∠DBC=∠BDC=45°,∠ABD=180°-45°=135°,
∵DE⊥BD,
∴∠ADE=90°,
∴∠EDC=∠BDC+∠BDE=45°+90°=135°,
∴∠ABD=∠EDC,
∴△ABD∽△EDC;

(2)DE的长度不变.
AB=
5

∵△ABD∽△EDC,
DE
AB
=
DC
BD
,则DE=
2
2
AB=
10
2
点评:本题是圆周角定理与相似三角形的判定与性质的综合应用,正确根据圆周角定理得到相等的角是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线y=-2x+b与y轴交于点A,与x轴交于点D,与双曲线y=
kx
在第一象限交于B、C两点,且AB•BD=2,则k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线y=-2x+6与x轴、y轴分别交于P、Q两点,把△POQ沿PQ翻折,点O落在R处,则点R的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,直线y=-2x+2与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作等精英家教网腰直角△ABC,∠BAC=90°,过C作CD⊥x轴,垂足为D.
(1)求点A、B的坐标和AD的长;
(2)求过B、A、D三点的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y1=2x与双曲线y2=
8x
相交于点A、E.另一直线y3=x+b与双曲线交于点A、B,与x、y精英家教网轴分别交于点C、D.直线EB交x轴于点F.
(1)求A、B两点的坐标,并比较线段OA、OB的长短;
(2)由函数图象直接写出函数y2>y3>y1的自变量x的取值范围;
(3)求证:△COD∽△CBF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=-2x+8与两坐标轴分别交于P,Q两点,在线段PQ上有一点A,过点A分别作两坐标轴的垂线,垂足分别为B、C.
(1)若四边形ABOC的面积为6,求点A的坐标.
(2)有人说,当四边形ABOC为正方形时,其面积最大,你认为正确吗?若正确,请给予证明;若错误,请举反例说明.

查看答案和解析>>

同步练习册答案