精英家教网 > 初中数学 > 题目详情
如图,△ABE≌△EDC,E在BD上,AB⊥BD,B为垂足.
(1)试问:AE和CE垂直吗?AE和EC相等吗?
(2)分别将图中的△ABE绕点E按顺时针方向旋转,分别画出满足下列条件的图形并说出此时△ABE与△EDC中相等的边和角.
①使AE与CE垂合;②使AE与CE垂直;③使AE与EC在同一直线上.
分析:(1)根据全等三角形对应边相等可得AE=EC,全等三角形对应角相等可得∠A=∠CED,然后求出∠AEC=90°,再根据垂直的定义判定;
(2)根据要求分别作出图形,再根据全等三角形对应边相等解答.
解答:解:(1)∵△ABE≌△EDC,
∴AE=EC,∠A=∠CED,
∵AB⊥BD,
∴∠A+∠AEB=90°,
∴∠CED+∠AEB=90°,
∴∠AEC=180°-90°=90°,
∴AE⊥CE;

(2)如图所示,相等的边有AB=ED,AE=EC,BE=DC,
相等的角有∠BAE=∠DEC,∠ABE=∠EDC,∠AEB=∠ECD.
点评:本题考查了全等三角形的性质,是基础题,熟记全等三角形对应边相等,全等三角形对应角相等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,△ABE、△ACD都是等边三角形,∠BAC=70°,图中△ACE可以看作由△ADB绕A点(  )度得到.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABE和△ACF分别是以△ABC的AB、AC为边的正三角形,CE、BF相交于O.
(1)求证:∠AEC=∠ABF;(2)求∠EOB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABE和△BCD都是等边三角形,且每个角是60°,那么线段AD与EC有何数量关系?请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABE中,AB=AE,以AB为直径的⊙O交BE于C,过点C作CD⊥AE于D,DC的延长线精英家教网与AB的延长线交于点P.
(1)求证:PD是⊙O的切线;
(2)若AE=10,BE=12,求DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABE和△ACD有公共点A,∠BAC=∠DAE=90°,AB=AC,AE=AD,延长BE分别交AC、CD于点M、F.求证:
(1)△ABE≌△ACD;
(2)BF⊥CD.

查看答案和解析>>

同步练习册答案