【题目】如图所示,已知O为坐标原点,长方形ABCD(点A与坐标原点重合)的顶点D、B分别在x轴、y轴上,且点C的坐标为(-4,8),连接BD,将△ABD沿直线BD翻折至△ABD,交CD于点E.
(1)求S△BED的面积;
(2)求点A坐标.
【答案】(1)10;(2)A’(-,)
【解析】
(1)根据矩形的性质以及翻折的性质得出DE=BE,再在Rt△BCE中利用勾股定理即可得出CE=3,DE=BE=5,从而可以求出答案;
(2)过点A’作A‘OB于N,交CD于M,易证△A’ED≌△CEB,,利用面积可得出A’E,在Rt△A’DF中,由勾股定理可得DF,从而得出答案。
解:(1)得BC=4,CD=8,易证△BED是等腰三角形,则BE=DE,设DE=x,∴BE=x,CE=8-x,
在Rt△CBE中,由勾股定理得x2=42+(8-x)2 ∴x=5
∴S△BED=10
(2)过点A’作A‘OB于N,交CD于M,
∵∠C=∠A’,∠CEB=∠A’ED,DE=BE
∴△A’ED≌△CEB,
则A’E=3, A’D=4,DE=5
∴A’M=,∴A’N=A’M+M’N=
∴在Rt△A’MD中,MD==
又A’在第二象限,则A’( -,)
科目:初中数学 来源: 题型:
【题目】如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=1,则△A8B8A9的边长_________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,为中点,延长交于点,其满足,为上一点,且于点.下列判断:①线段是的角平分线;②是边上的中线;③线段是的边上的高;④.其中判断正确的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象交于、B两点,与x轴交于点C,与y轴交于点E,其中.
求该一次函数和反比例函数的解析式;
若点D是x轴正半轴上一点,且,连接OB、BD,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在水果销售旺季,某水果店购进一优质水果,进价为 20 元/千克,售价不低于 20 元/千克,且不超过 32 元/千克,根据销售情况,发现该水果一天的销售量 y(千克)与该天的售价 x(元/千克)满足如下表所示的一次函数关系.
销售量 y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售价 x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天这种水果的售价为 23.5 元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利 150 元,那么该天水果的售价为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是( )
A. AB=24m B. MN∥AB
C. △CMN∽△CAB D. CM:MA=1:2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第个“广”字中的棋子个数是________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点
(1)求证:△ABM≌△DCM
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当AD:AB= _时,四边形MENF是正方形(只写结论,不需证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com