精英家教网 > 初中数学 > 题目详情

【题目】下表是某班同学随机投掷一枚硬币的试验结果(  )

抛掷次数n

50

100

150

200

250

300

350

400

450

500

正面向上次数m

22

52

71

95

116

138

160

187

214

238

正面向上频率

0.44

0.52

0.47

0.48

0.46

0.46

0.46

0.47

0.48

0.48

下面有三个推断:

①表中没有出现正面向上的概率是0.5的情况,所以不能估计正面向上的概率是0.5

②这些次试验投掷次数的最大值500,此时正面向上的频率是0.48,所以正面向上的概率是0.48

③投掷硬币正面向上的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生;

其中合理的是(  )

A. ①②B. ①③C. D. ②③

【答案】C

【解析】

随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.

解:①随着试验次数的增加,正面向上的频率总在0.5附近摆动,显示出一定的稳定性,可以估计正面向上的概率是0.5,故错误;

②这些次试验投掷次数的最大值是500,此时正面向上的频率是0.48,所以正面向上的概率是0.48,故错误;

③投掷硬币正面向上的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生,正确;

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC=13BC=10,点DBC的中点,DEAB于点E,则tanBDE的值等于(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为4的正方形中,相交于点,把折叠,使落在上,点上的点重合,展开后,折痕于点,连结.则四边形的周长为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元。根据市场需求,乙产品每天产量不少于5,当每天生产5件时,每件可获利120,每增加1,当天平均每件利润减少2,设每天安排人生产乙产品。

(1)根据信息填表:

产品种类

每天工人数()

每天产量()

每件产品可获利润()

15

(2)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等,已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30,求每天生产三种产品可获得的总利润()的最大值及相应的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形ABCD的坐标分别为A(﹣66),B(﹣82),C(﹣40),D(﹣24).

1)画出一个四边形A′B′C′D′,使四边形A′B′C′D′与四边形ABCD是以原点O为位似中心,相似比为12的位似图形.

2)直接写出点的坐标:A′   ),B′   ),C′   ),D′   ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中, ,点在边上移动(点不与点 重合),满足且点分别在边上.

)求证:

)当点移动到的中点时,求证: 平分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形的顶点在反比例函数的图象上,且.若动点开始沿以每秒1个单位长度的速度运动,同时动点开始沿以每秒2个单位长度的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动,设运动时间为.

1)求反比例函数的表达式;

2)当时,在轴上存在点,使的周长最小,请求出此时点的坐标,并直接写出的周长最小值;

3)在双曲线上是否存在一点,使以点为顶点的四边形是平行四边形?若存在,请直接写出满足条件的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】4件同型号的产品中,有1件不合格品和3件合格品.

(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;

(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;

(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB3AD8OAD中点,P是线段AO上一动点,以O为圆心,OP为半径作O分别交BOBO延长线于点EF,延长AEBC于点H

1)当OP2时,求BH的长.

2)当AHO于另一点G时,连接FGDF,作DMBF于点M,求证:△EFG∽△FDM

3)连结HO,当△EHO是直角三角形时,求OP的长.

查看答案和解析>>

同步练习册答案