精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形的顶点在反比例函数的图象上,且.若动点开始沿以每秒1个单位长度的速度运动,同时动点开始沿以每秒2个单位长度的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动,设运动时间为.

1)求反比例函数的表达式;

2)当时,在轴上存在点,使的周长最小,请求出此时点的坐标,并直接写出的周长最小值;

3)在双曲线上是否存在一点,使以点为顶点的四边形是平行四边形?若存在,请直接写出满足条件的值;若不存在,请说明理由.

【答案】1;(2)点坐标为;(3)存在,2

【解析】

1)通过AB,BC的长度,求出点B的坐标,将点B的坐标代入即可求出反比例函数的表达式;

2)当时,可求出E,F的坐标,作E关于y轴的对称点E’,连接E’F,则E’Fy轴的交点即为所求的点D,然后再求的周长的最小值即可;

3)分别用含t的代数式表示出E,F,B的坐标,分可以分别与相对三种情况,根据相对关系表达出坐标,最后将坐标代入反比例函数解析式求解.

1

∵点B在反比例函数图像上,

2时,

.

作点关于轴得对称点,连接轴与一点,即为所求的点

设直线解析式为

将点E’,F代入解析式中得,解得

∴直线解析式为

∴点坐标为

中,由勾股定理得,

中,由勾股定理得,

3)存在,2

由题意得:

相对时,此时MF的右侧,

∵四边形BEFM是平行四边形,

∵点M在反比例函数上,

,解得

由于,∴

相对,此时ME的正上方,

∵四边形EFBM是平行四边形,

∵点M在反比例函数上,

,解得2

由于,∴.

相对时,点M不在反比例函数图像上,所以此时不存在点M

综上所述,2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB6AD8PBC上不与BC重合的一个动点,过点P分别作BDAC的垂线,垂足为EF.则PE+PF的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在反比例函数,以线段为直径的圆交该双曲线于点,轴于点,若弧,则点的坐标为( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下表是某班同学随机投掷一枚硬币的试验结果(  )

抛掷次数n

50

100

150

200

250

300

350

400

450

500

正面向上次数m

22

52

71

95

116

138

160

187

214

238

正面向上频率

0.44

0.52

0.47

0.48

0.46

0.46

0.46

0.47

0.48

0.48

下面有三个推断:

①表中没有出现正面向上的概率是0.5的情况,所以不能估计正面向上的概率是0.5

②这些次试验投掷次数的最大值500,此时正面向上的频率是0.48,所以正面向上的概率是0.48

③投掷硬币正面向上的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生;

其中合理的是(  )

A. ①②B. ①③C. D. ②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数

1)该二次函数图象的对称轴是_____________________

2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为11,求点和点的坐标;

3)对于该二次函数图象上的两点,设,当时,均有,请结合图象,求出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为_____(答案用根号表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.

(1)求这条抛物线的表达式;

(2)求线段CD的长;

(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点My轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】寒冬来临,豆丝飘香,豆丝是鄂州民间传统美食;某企业接到一批豆丝生产任务,约定这批豆丝的出厂价为每千克4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,新工人李明第1天生产100千克豆丝,由于不断熟练,以后每天都比前一天多生产20千克豆丝;设李明第x天(,且x为整数)生产y千克豆丝,解答下列问题:

(1)yx的关系式,并求出李明第几天生产豆丝280千克?

(2)设第x天生产的每千克豆丝的成本是p元,px之间满足如图所示的函数关系;若李明第x天创造的利润为w元,求wx之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一笔直的海岸线l上有相距2kmAB两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离为多少千米?(参考数据:1.732,结果保留小数点后一位)

查看答案和解析>>

同步练习册答案