精英家教网 > 初中数学 > 题目详情
在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.

(1) 当点P与点C重合时(如图①).求证:△BOG≌△POE;(4分)
(2)通过观察、测量、猜想:=   ,并结合图②证明你的猜想;(5分)
(3)把正方形ABCD改为菱形,其他条件不变(如图③),若∠ACB=α,求的值.(用含α的式子表示)(5分)
(1)证明见解析(2),证明见解析(3)
解:(1)证明:∵四边形ABCD是正方形,P与C重合,
∴OB="OP" , ∠BOC=∠BOG=90°。
∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO。
∴∠GBO=∠EPO 。∴△BOG≌△POE(AAS)。
(2)。证明如下:
如图,过P作PM//AC交BG于M,交BO于N,

∴∠PNE=∠BOC=900, ∠BPN=∠OCB。
∵∠OBC=∠OCB =450, ∴∠NBP=∠NPB。
∴NB=NP。
∵∠MBN=900—∠BMN, ∠NPE=900—∠BMN,∴∠MBN=∠NPE。
∴△BMN≌△PEN(ASA)。∴BM=PE。
∵∠BPE=∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF。
∵PF⊥BM,∴∠BFP=∠MFP=900
又∵PF=PF, ∴△BPF≌△MPF(ASA)。∴BF="MF" ,即BF=BM。
∴BF=PE, 即
(3)如图,过P作PM//AC交BG于点M,交BO于点N,

∴∠BPN=∠ACB=α,∠PNE=∠BOC=900
由(2)同理可得BF=BM, ∠MBN=∠EPN。
∵∠BNM=∠PNE=900,∴△BMN∽△PEN。

在Rt△BNP中,, ∴,即

(1)由正方形的性质可由AAS证得△BOG≌△POE。
(2)过P作PM//AC交BG于M,交BO于N,通过ASA证明△BMN≌△PEN得到BM=PE,通过ASA证明△BPF≌△MPF得到BF=MF,即可得出的结论。
(3)过P作PM//AC交BG于点M,交BO于点N,同(2)证得BF=BM, ∠MBN=∠EPN,从而可证得△BMN∽△PEN,由和Rt△BNP中即可求得
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(本题8分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.请判断∠BAC与∠EDF是否相等,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,的长是关于的一元二次方程的两个根,且
(1)求的值.
(2)若轴上的点,且求经过两点的直线的解析式,并判断是否相似?
(3)若点在平面直角坐标系内,则在直线上是否存在点使以为顶点的四边形为菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在正方形网格上有五个三角形,其中与△ABC相似(不包括△ABC本身)有(   )
A.1个B.2个C.3个 D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在边长为4的正方形中,点上从运动,连接
于点

⑴试证明:无论点运动到上何处时,都有△≌△
⑵当点上运动到什么位置时,△的面积是正方形面积的
⑶若点从点运动到点,再继续在上运动到点,在整个运动过程中,当点 运动到什么位置时,△恰为等腰三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知在等腰△ABC中,∠A=∠B=30°.
(1)尺规作图:过点C作CD⊥AC交AB于点D;
过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);
(2)求证:.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC和△A1B1C1中,若,且∠B=∠B1=56°,则=      

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知在△ABC中,CF⊥AB于F,ED⊥AB于D,∠1=∠2.
(1)求证:FG∥BC
(2)请你在图中找出一对相似三角形,并说明相似的理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,身高1.6m的学生想测量学校旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2.0m,BC=8.0m,则旗杆的高度是
A.6.4mB.7.0mC.8.0mD.9.0m

查看答案和解析>>

同步练习册答案