精英家教网 > 初中数学 > 题目详情
如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.

(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.
(1)y=(x-2)2-1   y=x-1  (2)1≤x≤4
(1)先将点A(1,0)代入y=(x-2)2+m求出m的值,根据点的对称性确定B点坐标,然后根据待定系数法求出一次函数解析式;
(2)根据图象和A、B两点坐标可直接求出kx+b≥(x-2)2+m的x的取值范围.
解:(1)将点A(1,0)代入y=(x-2)2+m得(1-2)2+m=0,解得m=-1,
所以二次函数解析式为y=(x-2)2-1;
当x=0时,y=4-1=3,
所以C点坐标为(0,3),
由于C和B关于对称轴对称,而抛物线的对称轴为直线x=2,
所以B点坐标为(4,3),
将A(1,0)、B(4,3)代入y=kx+b得

解得

所以一次函数解析式为y=x-1;
(2)当kx+b≥(x-2)2+m时,1≤x≤4.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=kx+3的图象分别交x轴、y轴于点C、点D,与反比例函数的图象在第四象限相交于点P,并且PA⊥x轴于点A,PB⊥y轴于点B,已知B(0,-6)且SDBP=27.
(1)求上述一次函数与反比例函数的表达式;
(2)设点Q是一次函数y=kx+3图象上的一点,且满足△DOQ的面积是△COD面积的2倍,直接写出点Q的坐标.
(3)若反比例函数的图象与△ABP总有公共点,直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l与坐标轴分别交于A、B两点,∠BAO=45°,点A坐标为(8,0).动点P从点O出发,沿折线段OBA运动,到点A停止;同时动点Q也从点O出发,沿线段OA运动,到点A停止;它们的运动速度均为每秒1个单位长度.

(1)求直线AB的函数关系式;
(2)若点A、B、O与平面内点E组成的图形是平行四边形,请直接写出点E的坐标;
(3)在运动过程中,当P、Q的距离为2时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P,则这个正比例函数的表达式是               

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y千米,y关于x的函数关系如图所示,则甲车的速度是____________米/秒.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y1=kx+b的图象与反比例函数y2的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).

(1)求这两个函数的解析式;
(2)当x取何值时,y1>y2.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=kx+b的图象经过点A(0,-1),B(1,0),求这个一次函数的表达式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

直线y=-2x+m+2和直线y=3x+m-3的交点坐标互为相反数,则m=______。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知一次函数y=(k-2)x+k+1的图象不过第三象限,则k的取值范围是(  )
A.k>2B.k<2C.-1≤k≤2D.-1≤k<2

查看答案和解析>>

同步练习册答案