精英家教网 > 初中数学 > 题目详情

【题目】如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?

【答案】电线杆AB的高为8米

【解析】试题分析:过C点作CG⊥AB于点G把直角梯形ABCD分割成一个直角三角形和一个矩形,由于太阳光线是平行的,就可以构造出相似三角形,根据相似三角形的性质解答即可

试题解析:过C点作CG⊥AB于点G,∴GC=BD=3米,GB=CD=2米,∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴,∴AG==6,∴AB=AG+GB=6+2=8(米),故电线杆AB的高为8米

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果两个三角形的两边及其中一边的对角对应相等那么这两个三角形全等其逆命题是_______________________这个逆命题是________命题

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知MN是线段AB的垂直平分线上任意两点,则∠MAN和∠MBN之间关系是____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.

【特例探究】

(1)如图1,当tan∠PAB=1,c=4时,a=  ,b=  

如图2,当∠PAB=30°,c=2时,a=  ,b=  

【归纳证明】

(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.

【拓展证明】

(3)如图4,ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近似数3.27的准确值a的取值范围是( )
A.3.265≤a<3.275
B.3.265<a<3.275
C.3.265≤a≤3.274
D.3.265<a≤3.275

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需(
A.AB=DC
B.OB=OC
C.∠C=∠D
D.∠AOB=∠DOC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC∠B=40°ADBC边上的高,且∠DAC=20°∠BAC=________

【答案】70°

【解析】∵∠B=40°,AD⊥BC,

∴∠BAD=90°-40°=50°.

∵∠DAC=20°,

∴∠BAC=∠BAD+∠DAC=50°+20°=70°.

型】填空
束】
16

【题目】如图所示,EDABAC上的两点,BDCE交于点O,且AB=AC,使△ACE≌△ABD,你补充的条件是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于,且OD=4,△ABC的面积是(
A.25
B.84
C.42
D.21

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:a3a   

查看答案和解析>>

同步练习册答案