【题目】爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
【特例探究】
(1)如图1,当tan∠PAB=1,c=4时,a= ,b= ;
如图2,当∠PAB=30°,c=2时,a= ,b= ;
【归纳证明】
(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.
【拓展证明】
(3)如图4,ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.
【答案】(1)4,4;,.(2)a2+b2=5c2,理由见解析.(3)4.
【解析】试题分析:(1)①首先证明△APB,△PEF都是等腰直角三角形,求出PA、PB、PE、PF,再利用勾股定理即可解决问题.②连接EF,在RT△PAB,RT△PEF中,利用30°性质求出PA、PB、PE、PF,再利用勾股定理即可解决问题.(2)结论a2+b2=5c2.设MP=x,NP=y,则AP=2x,BP=2y,利用勾股定理分别求出a2、b2、c2即可解决问题.(3)取AB中点H,连接FH并且延长交DA的延长线于P点,首先证明△ABF是中垂三角形,利用(2)中结论列出方程即可解决问题.
试题解析:(1)解:如图1中,∵CE=AE,CF=BF,
∴EF∥AB,EF=AB=2,
∵tan∠PAB=1,
∴∠PAB=∠PBA=∠PEF=∠PFE=45°,
∴PF=PE=2,PB=PA=4,
∴AE=BF==2.
∴b=AC=2AE=4,a=BC=4.
如图2中,连接EF,
,∵CE=AE,CF=BF,
∴EF∥AB,EF=AB=1,
∵∠PAB=30°,
∴PB=1,PA=,
在RT△EFP中,∵∠EFP=∠PAB=30°,
∴PE=,PF=,
∴AE==,BF==,
∴a=BC=2BF=,b=AC=2AE=,
(2)结论
证明:如图3中,连接EF.
∵AF、BE是中线,
∴EF∥AB,EF=AB,
∴△FPE∽△APB,
∴==,
设FP=x,EP=y,则AP=2x,BP=2y,
∴a2=BC2=4BF2=4(FP2+BP2)=4x2+16y2,
b2=AC2=4AE2=4(PE2+AP2)=4y2+16x2,
c2=AB2=AP2+BP2=4x2+4y2,
∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2.
(3)解:如图4中,在△AGE和△FGB中,
,
∴△AGE≌△FGB,
∴BG=FG,取AB中点H,连接FH并且延长交DA的延长线于P点,
同理可证△APH≌△BFH,
∴AP=BF,PE=CF=2BF,
即PE∥CF,PE=CF,
∴四边形CEPF是平行四边形,
∴FP∥CE,
∵BE⊥CE,
∴FP⊥BE,即FH⊥BG,
∴△ABF是中垂三角形,
由(2)可知AB2+AF2=5BF2,
∵AB=3,BF=AD=,
∴9+AF2=5×()2,
∴AF=4.
科目:初中数学 来源: 题型:
【题目】从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)上述操作能验证的等式是(填A或B)
A.a2﹣2ab+b2=(a﹣b)2
B.a2﹣b2=(a+b)(a﹣b)
(2)应用你从(1)中选出的等式,计算: (1﹣ )(1﹣ )(1﹣ )…(1﹣ )(1﹣ ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式中,不能用平方差公式计算的是( )
A.(﹣x﹣y)(x﹣y)B.(﹣x+y)(﹣x﹣y)
C.(x+y)(﹣x+y)D.(x﹣y)(﹣x+y)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C为以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D.
(1)求证:AC平分∠BAD;
(2)若CD=3,AC=3,求⊙O的半径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】端午节假时,李明一家人驾车从宝鸡到汉中游玩,下图是他们距离汉中的路程y(km)与路上耗时x(h)之间的函数关系图象.
(1)请你根据图象写出路程y(km)与路上耗时x(h)之间的函数关系式;
(2)他们出发3.5 h时共行驶了多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面运算正确的是( )
A. 3ab·3ac=6a2bc B. 4a2b·4b2a=16a2b2
C. 2x2·7x2=9x4 D. 3y2·2y2=6y4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com